Published May 27, 2013
| Version 3020
Journal article
Open
Automated Process Quality Monitoring with Prediction of Fault Condition Using Measurement Data
Creators
Description
Detection of incipient abnormal events is important to
improve safety and reliability of machine operations and reduce losses
caused by failures. Improper set-ups or aligning of parts often leads to
severe problems in many machines. The construction of prediction
models for predicting faulty conditions is quite essential in making
decisions on when to perform machine maintenance. This paper
presents a multivariate calibration monitoring approach based on the
statistical analysis of machine measurement data. The calibration
model is used to predict two faulty conditions from historical reference
data. This approach utilizes genetic algorithms (GA) based variable
selection, and we evaluate the predictive performance of several
prediction methods using real data. The results shows that the
calibration model based on supervised probabilistic principal
component analysis (SPPCA) yielded best performance in this work.
By adopting a proper variable selection scheme in calibration models,
the prediction performance can be improved by excluding
non-informative variables from their model building steps.
Files
3020.pdf
Files
(150.1 kB)
Name | Size | Download all |
---|---|---|
md5:44a4faeb85a73d88553aee5f78d6c944
|
150.1 kB | Preview Download |
Additional details
References
- Y. S. Nga, R. Srinivasana, "An adjoined multi-model approach for monitoring batch and transient operations," Computers and Chemical Engineering, vol. 33, pp. 887-902, 2009.
- V. Vapnik, "The Nature of Statistical Learning Theory," Springer-Verlag, 1995, New York, NY.
- B. Schölkopf, A. J. Smola, and K. M├╝ller, "Nonlinear component analysis as a kernel eigenvalue problem," Neural Computation, vol. 10, pp. 1299-1319, 1998.
- R. Rosipal, and L. J. Trejo, "Kernel partial least squares regression in reproducing Kernel Hilbert space," Journal of Machine Learning Research, vol. 2, pp. 97-123, 2001.
- G. Baudat, and F. Anouar, "Generalized discriminant analysis using a kernel approach," Neural Computation, vol. 12, pp. 2385-2404, 2000.
- J. Trygg, and S. Wold, "Orthogonal projections to latent structures (O-PLS)," Journal of Chemometrics, vol. 16, pp. 19-128, 2002.
- S. Yu, K. Yu, V. Tresp, H. Kriegel, andM.Wu, "Supervised probabilistic principal component analysis. In: Proceedings of the 12th international conference on knowledge discovery and data mining (SIGKDD), pp 464-473, 2006.
- K. Kourti, "Application of latent variable methods to process control and multivariate statistical process control in industry," International Journal of Adaptive Control and Signal Processing, vol. 19, pp. 213-246, 2005.
- R. Leardi, and A. L. Gonzalez, "Genetic algorithms applied to feature selection in PLS regression: how and when to use them," Chemometrics Intelligent Laboratory Systems, vol. 41, pp. 195-207, 1998. [10] A. Durand, O. Devos, C. Ruckebusch, and J. P. Huvenne, "Genetic algorithm optimisation combined with partial least squares regression and mutual information variable selection procedures in near-infrared quantitative analysis of cotton-viscose textiles," Analytica Chimica Acta, vol. 595, pp. 72-79, 2007. [11] C. S.Soh, P. Raveendran, and R. Mukundan, "Mathematical models for prediction of active substance content in pharmaceutical tablets and moisture in wheat," Chemometrics and Intelligent Laboratory Systems, vol. 93, pp. 63-69, 2008. [12] Y. Shao, and Y. He, "Nondestructive measurement of the internal quality of bayberry juice using Vis/NIR spectroscopy," Journal of Food Engineering, vol. 79, pp. 1015-1019, 2007.