Published November 25, 2020 | Version v1
Journal article Open

Monitoring winemaking process using tyrosine influence in the excitation-emission matrices of wine

Description

Abstract: Wine samples collected during the winemaking process have been analyzed employing a
 previously optimized UHPLC-FD method, determining their biogenic amines and amino acids profile.
 The results obtained have been submitted to a statistical analysis from which it was extracted that the
 most influential analyte was tyrosine. Thanks to its fluorescence, a method for its determination by
 excitation-emission matrices has been proposed. The accuracy of the method has been checked by
 means of Elliptical Joint Confidence Region test. The winemaking process has been monitored with
 this method, obtaining a faster and cheaper way to follow the process.

Files

2021_Food_Chemistry.pdf

Files (827.1 kB)

Name Size Download all
md5:9619658178518fe76126a4ec17de1294
827.1 kB Preview Download

Additional details

Identifiers

References

  • References 366 Airado-Rodríguez, D., Durán-Merás, I., Galeano-Díaz, T., & Wold, J. P. (2011). Front-face 367 fluorescence spectroscopy: A new tool for control in the wine industry. Journal of Food 368 Composition and Analysis, 24(2), 257–264. https://doi.org/10.1016/j.jfca.2010.10.005 369 Arrieta, M. P., & Prats-Moya, M. S. (2012). Free amino acids and biogenic amines in Alicante 370 Monastrell wines. Food Chemistry, 135(3), 1511–1519. 371 https://doi.org/10.1016/j.foodchem.2012.06.008 372 Azcarate, S. M., Teglia, C. M., Karp, F., Camiña, J. M., & Goicoechea, H. C. (2017). A novel fast 373 quality control strategy for monitoring spoilage on mayonnaise based on modeling second-order 374 front-face fluorescence spectroscopy data. Microchemical Journal, 133, 182–187. 375 https://doi.org/10.1016/j.microc.2017.03.036 376 Callejón, R. M., Troncoso, A. M., & Morales, M. L. (2010). Determination of amino acids in grape377 derived products: A review. Talanta, 81(4–5), 1143–1152. 378 https://doi.org/10.1016/j.talanta.2010.02.040 379 Callejón, Raquel M., Amigo, J. M., Pairo, E., Garmón, S., Ocaña, J. A., & Morales, M. L. (2012). 380 Classification of Sherry vinegars by combining multidimensional fluorescence, parafac and 381 different classification approaches. Talanta, 88, 456–462. 382 https://doi.org/10.1016/j.talanta.2011.11.014 383 Carbonaro, C. M., Corpino, R., Chiriu, D., Ricci, P. C., Rivano, S., Salis, M., & Tuberoso, C. I. G. 384 (2019). Exploiting combined absorption and front face fluorescence spectroscopy to chase 385 classification: A proof of concept in the case of Sardinian red wines. Spectrochimica Acta - Part 386 A: Molecular and Biomolecular Spectroscopy, 214, 378–383. 387 https://doi.org/10.1016/j.saa.2019.02.041 388 Chiappini, F. A., Alcaraz, M. R., Goicoechea, H. C., & Olivieri, A. C. (2019). A graphical user 389 interface as a new tool for scattering correction in fluorescence data. Chemometrics and Intelligent 17 Laboratory Systems, 193(June). https://390 doi.org/10.1016/j.chemolab.2019.07.009 391 Fernstrom, J. D., & Fernstrom, M. H. (2007). Tyrosine, phenylalanine, and catecholamine synthesis 392 and function in the brain. Journal of Nutrition, 137(6), 1539–1547. 393 https://doi.org/10.1093/jn/137.6.1539s 394 Ferré, S., González-Ruiz, V., Guillarme, D., & Rudaz, S. (2019). Analytical strategies for the 395 determination of amino acids: Past, present and future trends. Journal of Chromatography B: 396 Analytical Technologies in the Biomedical and Life Sciences, 1132(September), 121819. 397 https://doi.org/10.1016/j.jchromb.2019.121819 398 He, Y., Zhao, X. E., Wang, R., Wei, N., Sun, J., Dang, J., … You, J. (2016). Simultaneous 399 Determination of Food-Related Biogenic Amines and Precursor Amino Acids Using in Situ 400 Derivatization Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction by Ultra-High- 401 Performance Liquid Chromatography Tandem Mass Spectrometry. Journal of Agricultural and 402 Food Chemistry, 64(43), 8225–8234. https://doi.org/10.1021/acs.jafc.6b03536 403 Izquierdo Cañas, P. M., García Romero, E., Gómez Alonso, S., Fernández González, M., & Palop 404 Herreros, M. L. L. (2008). Amino acids and biogenic amines during spontaneous malolactic 405 fermentation in Tempranillo red wines. Journal of Food Composition and Analysis, 21(8), 731– 406 735. https://doi.org/10.1016/j.jfca.2007.11.002 407 Jiménez Moreno, N., Torrea Goñ, D., & Ancín Azpilicueta, C. (2003). Changes in amine 408 concentrations during aging of red wine in oak barrels. Journal of Agricultural and Food 409 Chemistry, 51(19), 5732–5737. https://doi.org/10.1021/jf030254e 410 Lorenzo, C., Bordiga, M., Pérez-Álvarez, E. P., Travaglia, F., Arlorio, M., Salinas, M. R., … Garde- 411 Cerdán, T. (2017). The impacts of temperature, alcoholic degree and amino acids content on 412 biogenic amines and their precursor amino acids content in red wine. Food Research 413 International, 99(April), 328–335. https://doi.org/10.1016/j.foodres.2017.05.016 414 Mandel, J., & Linnig, F. J. (1957). Study of Accuracy in Chemical Analysis Using Linear Calibration 18 Curves. Analytical Chemistry, 29(415 5), 743–749. https://doi.org/10.1021/ac60125a002 416 Meléndez, M. E., Sarabia, L. A., & Ortiz, M. C. (2016). Distribution free methods to model the content 417 of biogenic amines in Spanish wines. Chemometrics and Intelligent Laboratory Systems, 155, 418 191–199. https://doi.org/10.1016/j.chemolab.2016.04.015 419 Olivieri, A. C., Wu, H. L., & Yu, R. Q. (2009). MVC2: A MATLAB graphical interface toolbox for 420 second-order multivariate calibration. Chemometrics and Intelligent Laboratory Systems, 96(2), 421 246–251. https://doi.org/10.1016/j.chemolab.2009.02.005 422 Önal, A., Tekkeli, S. E. K., & Önal, C. (2013). A review of the liquid chromatographic methods for the 423 determination of biogenic amines in foods. Food Chemistry, 138(1), 509–515. 424 https://doi.org/10.1016/j.foodchem.2012.10.056 425 Ordóñez, J. L., Callejón, R. M., Troncoso, A. M., & García-Parrilla, M. C. (2017). Evaluation of 426 biogenic amines profile in opened wine bottles: Effect of storage conditions. Journal of Food 427 Composition and Analysis, 63(July), 139–147. https://doi.org/10.1016/j.jfca.2017.07.042 428 Palomino-Vasco, M., Acedo-Valenzuela, M. I., Rodríguez-Cáceres, M. I., & Mora-Diez, N. (2019). 429 Automated chromatographic method with fluorescent detection to determine biogenic amines and 430 amino acids. Application to craft beer brewing process. Journal of Chromatography A, 1601, 155– 431 163. https://doi.org/10.1016/j.chroma.2019.04.063 432 Palomino-Vasco, M., Rodríguez-Cáceres, M. I., Mora-Diez, N., Pardo-Botello, R., & Acedo- 433 Valenzuela, M. I. (2019). Biogenic amines profile in red wines regarding aging and storage 434 conditions. Journal of Food Composition and Analysis, 83(July), 103295. 435 https://doi.org/10.1016/j.jfca.2019.103295 436 Papageorgiou, M., Lambropoulou, D., Morrison, C., Kłodzińska, E., Namieśnik, J., & Płotka-Wasylka, 437 J. (2018). Literature update of analytical methods for biogenic amines determination in food and 438 beverages. TrAC Trends in Analytical Chemistry, 98, 128–142. 439 https://doi.org/10.1016/j.trac.2017.11.001 19 Peña-Gallego, A., Hernández-Orte, P., Cacho, J., & Ferreira, V. ( 440 2012). High-Performance Liquid 441 Chromatography analysis of amines in must and wine: A review. Food Reviews International, 442 28(1), 71–96. https://doi.org/10.1080/87559129.2011.594973 443 Perestrelo, R., Bordiga, M., Locatelli, M., Silva, C., & Câmara, J. S. (2020). Polyphenols, biogenic 444 amines and amino acids patterns in Verdelho wines according to vintage. Microchemical Journal, 445 153(September 2019), 104383. https://doi.org/10.1016/j.microc.2019.104383 446 Petropoulos, S., Metafa, M., Kotseridis, Y., Paraskevopoulos, I., & Kallithraka, S. (2018). Amino acid 447 content of Agiorgitiko (Vitis vinifera L. cv.) grape cultivar grown in representative regions of 448 Nemea. European Food Research and Technology, 244(11), 2041–2050. 449 https://doi.org/10.1007/s00217-018-3115-3 450 PubChem. (2020). L-tyrosine. Retrieved September 2, 2020, from 451 https://pubchem.ncbi.nlm.nih.gov/compound/L-tyrosine 452 Ríos-Reina, R., Ocaña, J. A., Azcarate, S. M., Pérez-Bernal, J. L., Villar-Navarro, M., & Callejón, R. 453 M. (2019). Excitation-emission fluorescence as a tool to assess the presence of grape-must 454 caramel in PDO wine vinegars. Food Chemistry, 287(February), 115–125. 455 https://doi.org/10.1016/j.foodchem.2019.02.008 456 Robles, A., Fabjanowicz, M., Chmiel, T., & Płotka-Wasylka, J. (2019). Determination and 457 identification of organic acids in wine samples. Problems and challenges. TrAC - Trends in 458 Analytical Chemistry, 120. https://doi.org/10.1016/j.trac.2019.115630 459 Schenck, C. A., & Maeda, H. A. (2018). Tyrosine biosynthesis, metabolism, and catabolism in plants. 460 Phytochemistry, 149, 82–102. https://doi.org/10.1016/j.phytochem.2018.02.003 461 Slominski, A., Zmijewski, M. A., & Pawelek, J. (2012). L-tyrosine and L-dihydroxyphenylalanine as 462 hormone-like regulators of melanocyte functions. Pigment Cell and Melanoma Research, 25(1), 463 14–27. https://doi.org/10.1111/j.1755-148X.2011.00898.x 464 Valdés, M. E., Talaverano, M. I., Moreno, D., Prieto, M. H., Mancha, L. A., Uriarte, D., & Vilanova, 20 M. (2019). Effect of the timing of water deficit on the must amino 465 acid profile of Tempranillo 466 grapes grown under the semiarid conditions of SW Spain. Food Chemistry, 292(October 2018), 467 24–31. https://doi.org/10.1016/j.foodchem.2019.04.046