Published January 26, 2024 | Version v1
Dataset Open

StarDist_Fluorescent_cells

  • 1. University of Turku
  • 2. ROR icon Åbo Akademi University

Description

This repository includes a StarDist deep learning model and its training and validation datasets for detecting fluorescently labeled cancer cells perfused over an endothelial cell monolayer. The model was trained on 66 images labeled with CellTrace and demonstrated high accuracy, achieving an average F1 Score of 0.877. The dataset and the trained model can be used for biomedical image analysis, particularly in cancer research.

Specifications

  • Model: StarDist for cancer cell detection

  • Training Dataset:

    • Number of Images: 66 paired fluorescent microscopy images and label masks

    • Microscope: Nikon Eclipse Ti2-E, 10x objective

    • Data Type: Fluorescent microscopy images with manually segmented masks

    • File Format: TIFF (.tif)

      • Brightfield Images: 16-bit

      • Masks: 8-bit

    • Image Size: 1024 x 1024 pixels (Pixel size: 1.3205 μm)

  • Training Parameters:

    • Epochs: 200

    • Patch Size: 1024 x 1024 pixels

    • Batch Size: 2

  • Performance:

    • Average F1 Score: 0.877

    • Average IoU: 0.646

  • Model Training: Conducted using ZeroCostDL4Mic (https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki)

Reference

Fast label-free live imaging reveals key roles of flow dynamics and CD44-HA interaction in cancer cell arrest on endothelial monolayers
Gautier Follain, Sujan Ghimire, Joanna W. Pylvänäinen, Monika Vaitkevičiūtė, Diana Wurzinger, Camilo Guzmán, James RW Conway, Michal Dibus, Sanna Oikari, Kirsi Rilla, Marko Salmi, Johanna Ivaska, Guillaume Jacquemet
bioRxiv 2024.09.30.615654; doi: https://doi.org/10.1101/2024.09.30.615654

Files

StarDist_Fluorescent_cells.zip

Files (579.4 MB)

Name Size Download all
md5:3eb3e655407cbbb21516332ca076730d
579.4 MB Preview Download