Published January 19, 2024 | Version v1
Journal article Open

An approach to diagnosis of prostate cancer using fuzzy logic

Description

Early diagnosis of cancers is a major requirement for patients and a complicated job for the oncologist. If it is diagnosed early, it could have made the patient more likely to live. For a few decades, fuzzy logic emerged as an emphatic technique in the identification of diseases like different types of cancers. The recognition of cancer diseases mostly operated with inexactness, inaccuracy, and vagueness. This paper aims to design the fuzzy expert system (FES) and its implementation for the detection of prostate cancer. Specifically, prostate-specific antigen (PSA), prostate volume (PV), age, and percentage free PSA (%FPSA) are used to determine prostate cancer risk (PCR), while PCR serves as an output parameter. Mamdani fuzzy inference method is used to calculate a range of PCR. The system provides a scale of risk of prostate cancer and clears the path for the oncologist to determine whether their patients need a biopsy. This system is fast as it requires minimum calculation and hence comparatively less time which reduces mortality and morbidity and is more reliable than other economic systems and can be frequently used by doctors.

Files

23 20694 IJRES 5Jul23.pdf

Files (349.9 kB)

Name Size Download all
md5:b7b304cd2fb8380db1f07f9ce9a85147
349.9 kB Preview Download