FRACTALS AS JULIA AND MANDELBROT SETS OF LOGARITHMIC FUNCTION USING DOGAN AND KARAKAYA (DK) ITERATIVE SCHEME
Creators
- 1. S.G.R.R. (P.G.) College Dehradun-248001, Uttarakhand , India
- 2. S.G.R.R. (P.G.) College- Dehradun-248001, Uttarakhand , India
- 3. Pt. Lalit Mohan Sharma Campus, Sridev Suman Uttarakhand University, Rishikesh- 249201, Uttarakhand, India
Description
Fractals represent the phenomena of expanding symmetries which exhibit similar patterns for different scales. In this paper, we establish an escape criteria by using Dogan and Karakaya (DK) iterative process to generate fractals namely Julia and Mandelbrot sets for the logarithmic function F (z) = log(1 + zp) + c , where c ∈ ℂ and p ≥ 2. Our result is a generalization of the existing algorithm and technique providing fractals for different parameter values. Also, the time taken to obtain fractals for different parameters by using computer software MATLAB is computed in seconds.
Files
17-2023 Anita rev.pdf
Files
(730.2 kB)
Name | Size | Download all |
---|---|---|
md5:ca9a0a85e07fb312dd57cbb818c46e19
|
730.2 kB | Preview Download |