[MedMNIST+] 18x Standardized Datasets for 2D and 3D Biomedical Image Classification with Multiple Size Options: 28 (MNIST-Like), 64, 128, and 224
Creators
Description
Code [GitHub] | Publication [Nature Scientific Data'23 / ISBI'21] | Preprint [arXiv]
Abstract
We introduce MedMNIST, a large-scale MNIST-like collection of standardized biomedical images, including 12 datasets for 2D and 6 datasets for 3D. All images are pre-processed into 28x28 (2D) or 28x28x28 (3D) with the corresponding classification labels, so that no background knowledge is required for users. Covering primary data modalities in biomedical images, MedMNIST is designed to perform classification on lightweight 2D and 3D images with various data scales (from 100 to 100,000) and diverse tasks (binary/multi-class, ordinal regression and multi-label). The resulting dataset, consisting of approximately 708K 2D images and 10K 3D images in total, could support numerous research and educational purposes in biomedical image analysis, computer vision and machine learning. We benchmark several baseline methods on MedMNIST, including 2D / 3D neural networks and open-source / commercial AutoML tools. The data and code are publicly available at https://medmnist.com/.
Disclaimer: The only official distribution link for the MedMNIST dataset is Zenodo. We kindly request users to refer to this original dataset link for accurate and up-to-date data.
Update: We are thrilled to release MedMNIST+ with larger sizes: 64x64, 128x128, and 224x224 for 2D, and 64x64x64 for 3D. As a complement to the previous 28-size MedMNIST, the large-size version could serve as a standardized benchmark for medical foundation models. Install the latest API to try it out!
Python Usage
We recommend our official code to download, parse and use the MedMNIST dataset:
% pip install medmnist
% pythonTo use the standard 28-size (MNIST-like) version utilizing the downloaded files:
>>> from medmnist import PathMNIST>>> train_dataset = PathMNIST(split="train")
To enable automatic downloading by setting `download=True`:
>>> from medmnist import NoduleMNIST3D>>> val_dataset = NoduleMNIST3D(split="val", download=True)
Alternatively, you can access MedMNIST+ with larger image sizes by specifying the `size` parameter:
>>> from medmnist import ChestMNIST>>> test_dataset = ChestMNIST(split="test", download=True, size=224)
Citation
If you find this project useful, please cite both v1 and v2 paper as:
Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, Bingbing Ni. Yang, Jiancheng, et al. "MedMNIST v2-A large-scale lightweight benchmark for 2D and 3D biomedical image classification." Scientific Data, 2023.
Jiancheng Yang, Rui Shi, Bingbing Ni. "MedMNIST Classification Decathlon: A Lightweight AutoML Benchmark for Medical Image Analysis". IEEE 18th International Symposium on Biomedical Imaging (ISBI), 2021.
or using bibtex:
@article{medmnistv2, title={MedMNIST v2-A large-scale lightweight benchmark for 2D and 3D biomedical image classification}, author={Yang, Jiancheng and Shi, Rui and Wei, Donglai and Liu, Zequan and Zhao, Lin and Ke, Bilian and Pfister, Hanspeter and Ni, Bingbing}, journal={Scientific Data}, volume={10}, number={1}, pages={41}, year={2023}, publisher={Nature Publishing Group UK London} } @inproceedings{medmnistv1, title={MedMNIST Classification Decathlon: A Lightweight AutoML Benchmark for Medical Image Analysis}, author={Yang, Jiancheng and Shi, Rui and Ni, Bingbing}, booktitle={IEEE 18th International Symposium on Biomedical Imaging (ISBI)}, pages={191--195}, year={2021} }
Please also cite the corresponding paper(s) of source data if you use any subset of MedMNIST as per the description on the project website.
License
The MedMNIST dataset is licensed under Creative Commons Attribution 4.0 International (CC BY 4.0), except DermaMNIST under Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).
The code is under Apache-2.0 License.
Changelog
v3.0 (this repository): Released MedMNIST+ featuring larger sizes: 64x64, 128x128, and 224x224 for 2D, and 64x64x64 for 3D.
v2.2: Removed a small number of mistakenly included blank samples in OrganAMNIST, OrganCMNIST, OrganSMNIST, OrganMNIST3D, and VesselMNIST3D.
v2.1: Addressed an issue in the NoduleMNIST3D file (i.e., nodulemnist3d.npz). Further details can be found in this issue.
v2.0: Launched the initial repository of MedMNIST v2, adding 6 datasets for 3D and 2 for 2D.
v1.0: Established the initial repository (in a separate repository) of MedMNIST v1, featuring 10 datasets for 2D.
Note: This dataset is NOT intended for clinical use.
Files
Files
(46.1 GB)
Name | Size | Download all |
---|---|---|
md5:bbd3c5a5576322bc4cdfea780653b1ce
|
276.8 kB | Download |
md5:17721accfe9fb005146a47d33bc54b2f
|
1.9 MB | Download |
md5:7053d0359d879ad8a5505303e11de1dc
|
35.5 MB | Download |
md5:adace1e0ed228fccda1f39692059dd4c
|
569.1 MB | Download |
md5:b718ff6835fcbdb22ba9eacccd7b2601
|
1.5 GB | Download |
md5:2b94928a2ae4916078ca51e05b6b800b
|
156.3 MB | Download |
md5:750601b1f35ba3300ea97c75c52ff8f6
|
559.6 kB | Download |
md5:363e4b3f8d712e9b5de15470a2aaadf1
|
11.0 MB | Download |
md5:b56378a6eefa9fed602bb16d192d4c8b
|
30.9 MB | Download |
md5:742edef2a1fd1524b2efff4bd7ba9364
|
2.8 MB | Download |
md5:02c8a6516a18b556561a56cbdd36c4a8
|
82.8 MB | Download |
md5:db107e5590b27930b62dbaf558aebee3
|
1.4 GB | Download |
md5:45bd33e6f06c3e8cdb481c74a89152aa
|
3.9 GB | Download |
md5:9de6cd0b934ebb5b7426cfba5efbae16
|
401.6 MB | Download |
md5:0744692d530f8e62ec473284d019b0c7
|
19.7 MB | Download |
md5:2defd784463fa5243564e855ed717de1
|
372.6 MB | Download |
md5:8974907d8e169bef5f5b96bc506ae45d
|
1.1 GB | Download |
md5:b70a2f5635c6199aeaa28c31d7202e1f
|
100.1 MB | Download |
md5:6aa7b0143a6b42da40027a9dda61302f
|
3.3 MB | Download |
md5:f01d7e6316aedf4210da0da5b7437b42
|
26.6 MB | Download |
md5:8755a7e9e05a4d9ce80a24c3e7a256f3
|
29.3 MB | Download |
md5:c47c5b7d457bf6332200d2ea6d64ecd8
|
289.8 MB | Download |
md5:c68d92d5b585d8d81f7112f81e2d0842
|
54.9 MB | Download |
md5:0a97e76651ace45c5d943ee3f65b63ae
|
1.3 GB | Download |
md5:abc493b6d529d5de7569faaef2773ba3
|
4.0 GB | Download |
md5:e229e9440236b774d9f0dfef9d07bdaf
|
311.8 MB | Download |
md5:68e3f8846a6bd62f0c9bf841c0d9eacc
|
38.2 MB | Download |
md5:eeae80d0a227a8d099027e1b3cfd3b60
|
707.9 MB | Download |
md5:50747347e05c87dd3aaf92c49f9f3170
|
1.8 GB | Download |
md5:2dcccc29b88e6da5a01161ef20cda288
|
200.4 MB | Download |
md5:b9ceb9546e10131b32923c5bbeaea2b1
|
15.5 MB | Download |
md5:773c1f009daa3fe5d9a2a201b2a7ed94
|
287.5 MB | Download |
md5:050f5e875dc056f6768abf94ec9995d1
|
760.2 MB | Download |
md5:3ce34a8724ea6f548e6db4744d03b6a9
|
80.3 MB | Download |
md5:a0c5a1ff56af4f155c46d46fbb45a2fe
|
32.7 MB | Download |
md5:58a2205adf14a9d0a189cb06dc78bf10
|
361.5 MB | Download |
md5:9ab87b696fb54e2a387ebe992d6ed5f1
|
16.5 MB | Download |
md5:ded0c5fa01a95dc4978b956f613e9b8e
|
305.2 MB | Download |
md5:b354719e553fbbb2513d5533f52a4cb1
|
802.7 MB | Download |
md5:53a6d115339d874c25e309a994ff46d3
|
85.9 MB | Download |
md5:a8b06965200029087d5bd730944a56c1
|
205.6 MB | Download |
md5:ac42d08fb904d92c244187169d1fd1d9
|
4.3 GB | Download |
md5:2c51a510bcdc9cf8ddb2af93af1eadec
|
12.6 GB | Download |
md5:55aa9c1e0525abe5a6b9d8343a507616
|
1.1 GB | Download |
md5:28209eda62fecd6e6a2d98b1501bb15f
|
4.2 MB | Download |
md5:05b46931834c231683c68f40c47b2971
|
75.5 MB | Download |
md5:d6a3c71de1b945ea11211b03746c1fe1
|
214.4 MB | Download |
md5:8f4eceb4ccffa70c672198ea285246c6
|
20.6 MB | Download |
md5:bd4c0672f1bba3e3a89f0e4e876791e4
|
3.3 MB | Download |
md5:e48e916a24454daf90583d4e6efb1a18
|
46.5 MB | Download |
md5:eae7e3b6f3fcbda4ae613ebdcbe35348
|
128.0 MB | Download |
md5:afda852cc34dcda56f86ad2b2457dbcc
|
13.2 MB | Download |
md5:1235b78a3cd6280881dd7850a78eadb6
|
38.0 MB | Download |
md5:43bd14ebf3af9d3dd072446fedc14d5e
|
452.8 MB | Download |
md5:ebe78ee8b05294063de985d821c1c34b
|
125.0 MB | Download |
md5:61b955355d7425a89687b06cca3ce0c2
|
1.6 GB | Download |
md5:b077128c4a949f0a4eb01517f9037b9c
|
3.4 GB | Download |
md5:123ece2eba09d0aa5d698fda57103344
|
555.3 MB | Download |
md5:b41fd4f7e7e2feedddb201585ecafa1b
|
398.3 kB | Download |
md5:6bb274a8846e1097066dcd64e2c4520f
|
2.7 MB | Download |
Additional details
Related works
- Is published in
- Journal: 10.1038/s41597-022-01721-8 (DOI)
- Conference paper: 10.1109/ISBI48211.2021.9434062 (DOI)