Published September 30, 2014
| Version v1
Journal article
Restricted
Membrane-forming lipids of wild halophytes growing under the conditions of Prieltonie of South Russia
Description
Rozentsvet, Olga A., Nesterov, Victor N., Bogdanova, Elena S. (2014): Membrane-forming lipids of wild halophytes growing under the conditions of Prieltonie of South Russia. Phytochemistry 105: 37-42, DOI: 10.1016/j.phytochem.2014.05.007, URL: http://dx.doi.org/10.1016/j.phytochem.2014.05.007
Files
Linked records
Oops! Something went wrong while fetching results.
Additional details
Identifiers
- LSID
- urn:lsid:plazi.org:pub:FFFAFFA8C239220AFF9121236C43FFC6
Related works
- Has part
- Figure: 10.5281/zenodo.10488650 (DOI)
- Figure: 10.5281/zenodo.10488652 (DOI)
- Figure: 10.5281/zenodo.10488654 (DOI)
- Figure: 10.5281/zenodo.10488656 (DOI)
References
- Allakhverdiev, S.I., Nishiyama, Y., Suzuki, I., Tasaka, Y., Murata, N., 1999. Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proc. Natl. Acad. Sci. USA 96, 5862- 5867.
- Arisz, S.A., Munnik, T., 2011. The salt stress-induced LPA response in Chlamydomonas in produced via PLA2 hydrolysis of DGK-generated phosphatidic acid. J. Lipid Res. 52, 2012-2020.
- Ashfar, M., Harris, P.J.C., 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 166, 3-16.
- Balnokin, Y.V., Myasoedov, N.A., Shamsutdinov, Z.S., Shamsutdinov, N.Z., 2005. The role of Na + and K + in the maintenance of tissue hydration in the organs of halophytes of the family Chenopodiaceae of different ecological groups. Russ. J. Plant Physiol. 52, 779-787.
- Bligh, E.G., Dyer, W.J., 1959. A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911-917.
- Blits, K.C., Gallagher, J.L., 1990. Effect of NaCl on lipid content of plasma membranes isolated from roots and cell suspension cultures of the dicot halophyte Kosteletzkya virginica (L.) Presl. Plant Cell Rep. 9, 156-159.
- Brown, D.J., Dupont, F.M., 1989. Lipid composition of plasma membranes and endomembranes prepared from roots of barley (Hordeum yulgare L.). J. Plant Physiol. 90, 955-961.
- Caffrey, M., 1985. Kinetics and mechanism of lammellar gel/lamellar liquid crystal and lamellar/inverted hexagonal phase transition in phosphatidylethanolamine: a real-time X-ray diffraction study using synchrotron radiation. Biochemistry 24, 4826-4844.
- Glenn, E.P., Brown, J.J., 1999. Salt tolerance and crop potential of halophytes. Crit. Rev. Plant Sci. 18, 227-255.
- Gruner, S.M., Cullis, P.R., Hope, M.J., Tilcock, C.P.S., 1985. Lipid polymorphism: the molecular basis of non-bilayer phases. Annu. Rev. Biophys. Bioeng. 14, 211-238.
- Guan, B., Yu, J., Wang, X., Fu, Y., Kan, X., Lin, Q., Han, G., Lu, Z., 2011. Physiological responses of halophyte Suaeda salsa to water table and salt stresses in coastal wetland of Yellow River delta. Clean, Soil, Air, Water 39, 1029-1035.
- Hansen, C.E., Rossi, P., 1990. Arachidonic and eicosapentaenoic acids in Brachytheciaceae and Hypnaceae moss species. Phytochemistry 29, 3749-3754.
- Hirayama, O., Mihara, M., 1987. Characterisation of membrane lipids of higher plants different in soil-tolerance. J. Agric. Biol. Chem. 51, 3215-3221.
- Ivanova, A., Khozin-Goldberg, I., Kamenarska, Z., Nechev, J., Cohen, Z., Popov, S., Stefanov, K., 2003. Lipophylic compounds from Euphorbia peplis L., a halophytic plant from the Bulgarian Black Sea coast. Z. Naturforsch. 58, 783-788.
- Ivanova, T.V., Myasoedov, N.A., Pchelkin, V.P., Tsydendambaev, V.D., Vereshchagin, A.G., 2009. Increased content of very-long-chain fatty acids in the lipids of halophyte vegetative organs. Russ. J. Plant Physiol. 56, 787-794.
- Kabara, J.I., Chen, J.S., 1976. Microdetermination of lipids classes after thin-layer chromatography. Anal. Chem. 48, 814-817.
- Kasamo, K., Nouchi, I., 1987. The role of phospholipids in plasma membrane ATPase activity in Vagina radiata L. (mung bean) roots and hypocotyls. Plant Physiol. 83, 323-328.
- Kates, M., 1972. Techniques of Lipidology, second ed. Elsevier, Amsterdam.
- Kerkeb, L.J., Donaire, P., Venema, K., Rodriguez-Rosales, M.P., 2001. Tolerance to NaCl induces changes in plasma membrane lipid composition, fluidity, and H1- ATPase activity of tomato calli. Physiol. Plant. 113, 217-224.
- Kirichenko, E.B., Orlova, Y.V., Kirilov, D.V., 2008. Artemisia lerchiana as a producer of essential oils. Russ. J. Plant Physiol. 55, 846-853.
- Kreslavsky, V.D., Carpentier, R., Klimov, V.V., Murata, N., Allakhverdiev, S.I., 2007. Molecular mechanisms of stress resistance of the photosynthetic apparatus. Biochemistry (Moscow) Supplement Series A: Membrane Cell. Biochem. (Mosc.) Suppl. Ser. A Membr. Cell Biol. 1, 185-205.
- Lokhande, V.H., Suprasanna, P., 2012. Abiotic stress tolerance. In: Ahmad, P., Prasad, M.N.V. (Eds.), Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change. Springer Science/Business Media, LLC, New York, Dordrecht, Heidelberg, London, pp. 29-56.
- Lopez-Perez, L., Martinez-Ballesta, M.C., Maurel, C., Carvajal, M., 2009. Changes in plasma membrane lipids, aquaporins, and proton pumps of broccoli roots as an adaptation mechanism to salinity. Phytochemistry 70, 492-500.
- Luttge, U., 1993. Plant cell membranes and salinity: structural, biochemical, and biophysical changes. Rev. Bras. Fisiol. Veg. 5, 217-224.
- Lv, S., Jiang, P., Chen, X., Fan, P., Wang, X., Li, Y., 2012. Multiple compartmentalization of sodium-conferred salt tolerance in Salicornia europaea. Plant Physiol. Biochem. 51, 47-52.
- Mansour, M.M.F., Salama, K.H.A., Al-Mutawa, M.M., Abou Hadid, A.F., 2002. Effect of NaCl and polyamines on plasma membrane lipids of wheat roots. Biol. Plant. 45, 235-239.
- Minoda, A., Sonoike, K., Okada, K., Sato, N., Tsuzuki, M., 2003. Decrease in the efficiency of the electron donation to tyrosine Z of photosystem II in an SQDGdeficient mutant of Chlamydomonas. FEBS Lett. 553, 109-112.
- Okanenko, A.A., Taran, N.Y., Kosyk, O.I., 2011. Sulfur-Containing Plant Lipids. Avega, Kyiv.
- Parida, A.K., Das, A.B., 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicol. Environ. Saf. 60, 324-349.
- Rahdari, P., Hoseini, S.M., 2011. Salinity stress: a review. Tech. J. Eng. Appl. Sci. 1, 63-66.
- Schaller, H., 2004. New aspects of sterol biosynthesis in growth and development of higher plants. Plant Physiol. Biochem. 42, 465-476.
- Shepherd, K.A., Macfarlane, T.D., Colmer, T.D., 2005. Morphology, anatomy, and histochemistry of Salicornioideae (Chenopodiaceae) fruits and seeds. Ann. Bot. 95, 917-933.
- Sivakumar, T., Panneerselvam, R., 2011. Salinity induced changes in photosynthetic pigment and antioxidant responses in Sesuvium portulacastrum. Pak. J. Biol. Sci. 14 (21), 967-975.
- Sivasankaramoorthy, S., Balasubramanian, T., Amuthavalli, P., Sivaraman, P., 2011. Effect of NaCl on growth, ion accumulation, and oxidative enzymes of Suaeda nudiflora Moq. Recent Res. Sci. Technol. 3, 123-127.
- Strogonov, B.P., Klyschev, L.K., Asimov, R.A., 1989. The Problems of Salt-Resistant Plants. Fan Publisher, Tashkent.
- Sui, N., Li, M., Li, K., Song, J., Wang, B.-S., 2010. Increase in unsaturated fatty acids in membrane lipids of Suaeda salsa L. enhances protection of photosystem II under high salinity. Photosynthetica 48, 623-629.
- Vaskovsky, V.E., Latyshev, N.A., 1975. Modified Jungnickel's reagent for detecting phospholipids and other phosphorus compounds on thin-layer chromatograms. J. Chromatogr. 115, 246-249.
- Voznesenskaya, E.V., Chuong, S., Koteyeva, N., Franceschi, V.R., Freitag, H., Edwards, G.E., 2007. Structural, biochemical, and physiological characterisation of C4 photosynthesis in species having two vastly different types of Kranz anatomy in genus Suaeda (Chenopodiaceae). Plant Biol. 9, 745-757.
- Wada, H., Murata, N., 2009. Lipids in thylakoid membranes and photosynthetic cells. In: Wada, H., Murata, N. (Eds.), Lipids in Photosynthesis: Essential and Regulatory Function. Springer, Dordrecht, pp. 1-9.
- Wang, L., Zhang, K., Huang, W., Han, W., Tian, C.-Y., 2011. Seed oil content and fatty acid composition of annual halophyte Suaeda acuminata: a comparative study on dimorphic seeds. Afr. J. Biotechnol. 10, 19106-19108.
- Weber, D.J., Ansari, R., Gul, B., Ajmal Khan, M., 2007. Potential of halophytes as source of edible oil. J. Arid Environ. 68, 315-321.
- Wu, J., Seliskar, D.M., Gallagher, J.L., 2005. The response of plasma membrane lipid composition in callus of the halophyte Spartina patens (Poaceae) to salinity stress. Am. J. Bot. 92, 852-858.