Published April 30, 2015
| Version v1
Journal article
Restricted
The metabolomics of oxidative stress
Description
Noctor, Graham, Lelarge-Trouverie, Caroline, Mhamdi, Amna (2015): The metabolomics of oxidative stress. Phytochemistry 112 (1): 33-53, DOI: 10.1016/j.phytochem.2014.09.002, URL: http://dx.doi.org/10.1016/j.phytochem.2014.09.002
Files
Linked records
Oops! Something went wrong while fetching results.
Additional details
Identifiers
- LSID
- urn:lsid:plazi.org:pub:0B13D0545E6B0575A35FC56FC61DE41B
References
- Achard, P., Renou, J.P., Berthome, R., Harberd, N.P., Genschik, P., 2008. Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr. Biol. 18, 656-660.
- Aguayo, M.F., Ampuero, D., Mandujano, P., Parada, R., Munoz, R., Gallart, M., Altabella, T., Cabrera, R., Stange, C., Handford, M., 2013. Sorbitol dehydrogenase is a cytosolic protein required for sorbitol metabolism in Arabidopsis thaliana. Plant Sci. 205-206, 63-75.
- Araujo, W.L., Ishizaki, K., Nunes-Nesi, A., Larson, T.R., Tohge, T., Krahnert, I., Witt, S., Obata, T., Schauer, N., Graham, I.A., Leaver, C.J., Fernie, A.R., 2010. Identification of the 2-hydroxyglutarate and isovaleryl-CoA dehydrogenases as alternative electron donors linking lysine catabolism to the electron transport chain of Arabidopsis mitochondria. Plant Cell 22, 1549-1563.
- Araujo, W.L., Tohge, T., Ishizaki, K., Leaver, C.J., Fernie, A.R., 2011. Protein degradation - an alternative respiratory substrate for stressed plants. Trends Plant Sci. 16, 489-498.
- Baldacci-Cresp, F., Chang, C., Maucourt, C., Deborde, C., Hopkins, J., Lecomte, P., Bernillon, S., Brouquisse, R., Moing, A., Abad, P., Herouart, D., Puppo, A., Favery, B., Frendo, P., 2012. (Homo)glutathione deficiency impairs root-knot nematode development in Medicago truncatula. PLoS Pathog. 8, e1002471.
- Ball, L., Accotto, G., Bechtold, U., Creissen, G., Funck, D., Jimenez, A., Kular, B., Leyland, N., Mejia-Carranza, J., Reynolds, H., Karpinski, S., Mullineaux, P.M., 2004. Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16, 2448-2462.
- Bao, H., Chen, X., Lv., S., Jiang, P., Feng, J., Fan, P., Nie, L., Li, Y., 2014. Virus-induced gene silencing reveals control of reactive oxygen species accumulation and salt tolerance in tomato by γ -aminobutyric acid metabolic pathway. Plant Cell Environ. http://dx.doi.org/10.1111/pce.12419.
- Barranco-Medina, S., Krell, T., Finkemeier, I., Sevilla, F., Lazaro, J.J., Dietz, K.J., 2007. Biochemical and molecular characterization of the mitochondrial peroxiredoxin PsPrxII F from Pisum sativum. Plant Physiol. Biochem. 45, 729-739.
- Bartsch, M., Bednarek, P., Vivancos, P.D., Schneider, B., von Roepenack-Lahaye, E., Foyer, C.H., Kombrink, E., Scheel, D., Parker, J.E., 2010. Accumulation of isochorismate-derived 2,3-dihydroxybenzoic 3-O -β- D-xyloside in Arabidopsis resistance to pathogens and ageing of leaves. J. Biol. Chem. 285, 25654-25665.
- Baxter, C.J., Redestig, H., Schauer, N., Repsilber, D., Patil, K.R., Nielsen, J., Selbig, J., Liu, J., Fernie, A.R., Sweetlove, L.J., 2007. The metabolic response of heterotrophic Arabidopsis cells to oxidative stress. Plant Physiol. 143, 312-325.
- Benina, M., Ribeiro, D.M., Gechev, T.S., Muller-Rober, B., Schippers, J.H.M., 2014. A cell type-specific view on the translation of mRNAs from ROS-responsive genes upon paraquat treatment of Arabidopsis thaliana leaves. Plant Cell Environ. http://dx.doi.org/10.1111/pce.12355.
- Bestwick, C.S., Brown, I.R., Bennett, M.H.R., Mansfield, J.W., 1997. Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv phaseolicola. Plant Cell 9, 209-221.
- Bick, J.A., Setterdahl, A.T., Knaff, D.B., Chen, Y., Pitcher, L.H., Zilinskas, B.A., Leustek, T., 2001. Regulation of the plant-type 5 0-adenylyl sulfate reductase by oxidative stress. Biochemistry 40, 9040-9048.
- Bienert, G.P., Moller, A.L., Kristiansen, K.A., Schulz, A., Moller, I.M., Schjoerring, J.K., Jahn, T.P., 2007. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem. 282, 1183-1192.
- Bindschedler, L.V., Dewdney, J., Blee, K.A., Stone, J.M., Asai, T., Plotnikov, J., Denoux, C., Hayes, T., Gerrish, C., Davies, D.R., Ausubel, F.M., Bolwell, G.P., 2006. Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J. 47, 851-863.
- Blanco, F., Salinas, P., Cecchini, N.M., Jordana, X., Van Hummelen, P., Alvarez, M.E., Holuigue, L., 2009. Early genomic responses to salicylic acid in Arabidopsis. Plant Mol. Biol. 70, 79-102.
- Bolton, M.D., 2009. Primary metabolism and plant defense - fuel for the fire. Mol. Plant Microbe Interact. 22, 487-497.
- Borisova, M.M., Kozuleva, M.A., Rudenko, N.N., Naydov, I.A., Klenina, I.B., Ivanov, B.N., 2012. Photosynthetic electron flow to oxygen and diffusion of hydrogen peroxide through the chloroplast envelope via aquaporins. Biochim. Biophys. Acta 1817, 1314-1321.
- Bors, W., Langebartels, C., Michel, C., Sandermann, H., 1989. Polyamines as radical scavengers and protectants against ozone damage. Phytochemistry 28, 1589- 1595.
- Bouche, N., Fait, A., Bouchez, D., MOller, S.G., Fromm, H., 2003. Mitochondrial succinic-semialdehyde dehydrogenase of the γ- aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proc. Natl. Acad. Sci. U.S.A. 100, 6843-6848.
- Browse, J., 2009. Jasmonate passes muster: a receptor and targets for the defense hormone. Annu. Rev. Plant Biol. 60, 183-205.
- Chaouch, S., Noctor, G., 2010. Myo -inositol abolishes salicylic acid-dependent cell death and pathogen defence responses triggered by peroxisomal H2O2. New Phytol. 188, 711-718.
- Chaouch, S., Queval, G., Vanderauwera, S., Mhamdi, A., Vandorpe, M., Langlois-Meurinne, M., Van Breusegem, F., Saindrenan, P., Noctor, G., 2010. Peroxisomal hydrogen peroxide is coupled to biotic defense responses by ISOCHORISMATE SYNTHASE1 in a daylength-related manner. Plant Physiol. 153, 1692-1705.
- Chaouch, S., Queval, G., Noctor, G., 2012. AtRbohF is a crucial modulator of defenceassociated metabolism and a key actor in the interplay between intracellular oxidative stress and pathogenesis responses in Arabidopsis. Plant J. 69, 613-627.
- Christ, B., Sussenbacher, I., Moser, S., Bichsel, N., Egert, A., Muller, T., Krautler, B., Hortensteiner, S., 2013. Cytochrome P450 CYP89A9 is involved in the formation of major chlorophyll catabolites during leaf senescence in Arabidopsis. Plant Cell 25, 1868-1880.
- Christ, B., Egert, A., Sussenbacher, I., Krautler, B., Bartels, D., Peters, S., Hortensteiner, S., 2014. Water deficit induces chlorophyll degradation via the ''PAO/ phyllobilin'' pathway in leaves of homoio- (Craterostigma pumilum) and poikilochlorophyllous (Xerophyta viscosa) resurrection plants. Plant Cell Environ. http://dx.doi.org/10.1111/pce.12308.
- Colville, L., Smirnoff, N., 2008. Antioxidant status, peroxidase activity, and PR protein transcript levels in ascorbate-deficient Arabidopsis thaliana vtc mutants. J. Exp. Bot. 59, 3857-3868.
- Conklin, P.L., Williams, E.H., Last, R.L., 1996. Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc. Natl. Acad. Sci. U.S.A. 93, 9970- 9974.
- Costa, A., Drago, A., Behera, S., Zottini, M., Pizzo, P., Schroeder, J.I., Pozzan, T., Lo Schiavo, F., 2010. H2O2 in plant peroxisomes: an in vivo analysis uncovers a Ca2+-dependent scavenging system. Plant J. 62, 760-772.
- Couee, I., Sulmon, C., Gouesbet, G., El Amrani, A., 2006. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J. Exp. Bot. 57, 449-459.
- Daschner, K., Couee, I., Binder, S., 2001. The mitochondrial isovaleryl-CoA dehydrogenase of Arabidopsis oxidizes intermediates of leucine and valine catabolism. Plant Physiol. 126, 601-612.
- Dat, J.F., Pellinen, R., Beeckman, T., Van De Cotte, B., Langebartels, C., Kangasjarvi, J., Inze, D., Van Breusegem, F., 2003. Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J. 33, 1-12.
- Daudi, A., Cheng, Z., O'Brien, J.A., Mammarella, N., Khan, S., Ausubel, F.M., Bolwell, G.P., 2012. The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. Plant Cell 24, 275-287.
- Davletova, S., Rizhsky, L., Liang, H., Shengqiang, Z., Oliver, D.J., Coutu, J., Shulaev, V., Schlauch, K., Mittler, R., 2005. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17, 268-281.
- Davoine, C., Falletti, O., Douki, T., Iacazio, G., Ennar, N., Montillet, J.L., Triantaphylides, C., 2006. Adducts of oxylipin electrophiles to glutathione reflect a 13 specificity of the downstream lipoxygenase pathway in the tobacco hypersensitive response. Plant Physiol. 140, 1484-1493.
- De Block, M., Verduyn, C., De Brouwer, D., Cornelissen, M., 2005. Poly(ADP-ribose) polymerase in plants affects energy homeostasis, cell death and stress tolerance. Plant J. 41, 95-106.
- Dean, J.V., Delaney, S.P., 2008. Metabolism of salicylic acid in wild-type, ugt74f1 and ugt74f2 glucosyltransferase mutants of Arabidopsis thaliana. Physiol. Plant 132, 417-425.
- del Rio, L.A., Sandalio, L.M., Corpas, F.J., Palma, J.M., Barroso, J.B., 2006. Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol. 141, 330-335.
- Dellapenna, D., Mene-Saffrane, L., 2011. Vitamin E. Adv. Bot. Res. 59, 179-227.
- Demmig-Adams, B., 1990. Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim. Biophys. Acta 1020, 1-24.
- Dghim, A.A., Mhamdi, A., Vaultier, M.V., Hasenfratz-Sauder, M.P., Le Thiec, D., Dizengremel, P., Noctor, G., Jolivet, E., 2013. Analysis of cytosolic isocitrate dehydrogenase and glutathione reductase 1 in photoperiod-influenced responses to ozone using Arabidopsis knockout mutants. Plant Cell Environ. 36, 1981-1991.
- Dietrich, R.A., Delaney, T.P., Uknes, S.J., Ward, E.R., Ryals, J.A., Dangl, J.L., 1994. Arabidopsis mutants simulating disease resistance response. Cell 7, 565-572.
- Dixon, D.P., Skipsey, M., Grundy, N.M., Edwards, R., 2005. Stress-induced protein S - glutathionylation in Arabidopsis. Plant Physiol. 138, 2233-2244.
- Dixon, D.P., Hawkins, T., Hussey, P.J., Edwards, R., 2009. Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. J. Exp. Bot. 60, 1207-1218.
- Dizengremel, P., Le Thiec, D., Hasenfratz-Sauder, M.-P., Vaultier, M.-N., Bagard, M., Jolivet, Y., 2009. Metabolic-dependent changes in plant cell redox power after ozone exposure. Plant Biol. 11, 35-42.
- Donahue, J.L., Alford, S.R., Torabinejad, J., Kerwin, R.E., Nourbakhsh, A., Ray, W.K., Hernick, M., Huang, X., Lyons, B.M., Hein, P.P., et al., 2010. The Arabidopsis thaliana Myo -inositol 1-phosphate synthase1 gene is required for Myo -inositol synthesis and suppression of cell death. Plant Cell 22, 888-903.
- Ekman, D.R., Lorenz, W.W., Przybyla, A.E., Wolfe, N.L., Dean, J.F.D., 2003. SAGE analysis of transcriptome responses in Arabidopsis roots exposed to 2,4,6- trinitrotoluene. Plant Physiol. 133, 1397-1406.
- Engqvist, M.K., Kuhn, A., Wienstroer, J., Weber, K., Jansen, E.E., Jakobs, C., Weber, A.P., Maurino, V., 2011. Plant D-2-hydroxyglutarate dehydrogenase participates in the catabolism of lysine especially during senescence. J. Biol. Chem. 286, 11382-11390.
- Esposito-Rodriguez, M., Laissue, P.P., Littlejohn, G.R., Smirnoff, N., Mullineaux, P.M., 2013. The use of HyPer to examine spatial and temporal changes in H2O2 in high light-exposed plants. Methods Enzymol. 527, 185-201.
- Eudes, A., Bozzo, G.G., Waller, J.C., Naponelli, V., Lim, E.L., Bowles, D.J., Gregory, J.F., Hanson, A.D., 2008. Metabolism of the folate precursor p -aminobenzoate in plants. Glucose ester formation and vacuolar storage. J. Biol. Chem. 283, 15451- 15459.
- Farmer, E.E., Mueller, M.J., 2013. ROS-mediated lipid peroxidation and RESactivated signaling. Annu. Rev. Plant Biol. 64, 429-450.
- Feechan, A., Kwon, E., Yun, B.W., Wang, Y., Pallas, J.A., Loake, G.J., 2005. A central role for S -nitrosothiols in plant disease resistance. Proc. Natl. Acad. Sci. U.S.A. 102, 8054-8059.
- Fernie, A.R., Trethewey, R.N., Krotzky, A.J., Willmitzer, L., 2004. Metabolite profiling: from diagnostics to systems biology. Nat. Rev. Mol. Cell Biol. 5, 763-769.
- Fischer, B.B., Hideg, E., Krieger-Liszkay, A., 2013. Production, detection, and signaling of singlet oxygen in photosynthetic organisms. Antioxid. Redox Signal. 18, 2145-2162.
- Foyer, C.H., Noctor, G., 2003. Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol. Plant 119, 355- 364.
- Foyer, C.H., Noctor, G., 2009. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid. Redox Signal. 11, 861-905.
- Foyer, C.H., Noctor, G., 2011. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 155, 2-18.
- Fridovich, I., 1997. Superoxide anion radical, superoxide dismutases, and related matters. J. Biol. Chem. 272, 18515-18517.
- Gadjev, I., Vanderauwera, S., Gechev, T.S., Laloi, C., Minkov, I.N., Shulaev, V., Apel, K., Inze, D., Mittler, R., Van Breusegem, F., 2006. Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol. 141, 436-445.
- Galili, G., 1995. Regulation of lysine and threonine synthesis. Plant Cell 7, 899-906.
- Galvez-Valdivieso, G., Fryer, M.J., Lawson, T., Slattery, K., Truman, W., Smirnoff, N., Asami, T., Davies, W.J., Jones, A.M., Baker, N.R., Mullineaux, P.M., 2009. The high light response in Arabidopsis involves ABA signaling between vascular and bundle sheath cells. Plant Cell 21, 2143-2162.
- Gao, X., Yuan, H.M., Hu, Y.Q., Li, J., Lu, Y.T., 2014. Mutation of Arabidopsis CATALASE2 results in hyponastic leaves by changes of auxin levels. Plant Cell Environ. 37, 175-188.
- Gatzek, S., Wheeler, G.L., Smirnoff, N., 2002. Antisense suppression of L- galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light-modulated L- galactose synthesis. Plant J. 30, 541- 553.
- Geu-Flores, F., Nielsen, M.T., Nafisi, M., MOldrup, M.E., Olsen, C.E., Motawia, M.S., Halkier, B.A., 2009. Glucosinolate engineering identifies a γ- glutamyl peptidase. Nat. Chem. Biol. 5, 575-577.
- Ghassemian, M., Lutes, J., Chang, H.S., Lange, I., Chen, W., Zhu, T., Wang, X., Lange, B.M., 2008. Abscisic acid-induced modulation of metabolic and redox control pathways in Arabidopsis thaliana. Phytochemistry 69, 2899-2911.
- Glawischnig, E., 2007. Camalexin. Phytochemistry 68, 401-406.
- Gomez, L., Vanacker, H., Buchner, P., Noctor, G., Foyer, C.H., 2004a. The intercellular distribution of glutathione synthesis and its response to chilling in maize. Plant Physiol. 134, 1662-1671.
- Gomez, L.D., Noctor, G., Knight, M., Foyer, C.H., 2004b. Regulation of calcium signaling and gene expression by glutathione. J. Exp. Bot. 55, 1851-1859.
- Goyer, A., Johnson, T.L., Olsen, L.J., Collakova, E., Shachar-Hill, Y., Rhodes, D., Hanson, A.D., 2004. Characterization and metabolic function of a peroxisomal sarcosine and pipecolate oxidase from Arabidopsis. J. Biol. Chem. 279, 16947-16953.
- Grace, S.C., Logan, B.A., 1996. Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species. Plant Physiol. 112, 1631- 1640.
- Green, M.A., Fry, S.C., 2005. Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O -oxalyl-L- threonate. Nature 433, 83-87.
- Grzam, A., Martin, M.N., Hell, R., Meyer, A.J., 2007. γ- Glutamyl transpeptidase GGT4 initiates vacuolar degradation of glutathione S -conjugates in Arabidopsis. FEBS Lett. 581, 3131-3138.
- Gunning, V., Tzafestas, K., Sparrow, H., Johnston, E.J., Brentnall, A.S., Potts, J.R., Rylott, E.L., Bruce, N.C., 2014. Arabidopsis glutathione transferases exhibit a range of detoxification activities on the environmental pollutant and explosive 2,4,6-trinitrotoluene. Plant Physiol. 165, 854-865.
- Hackenberg, T., Juul, T., Auzina, A., Gwi¨zd¨z, S., Malolepszy, A., Lehmann Nielsen, K., JOrgensen, J.E., Hofius, D., Van Breusegem, F., Petersen, M., Andersen, S.U., 2013. Catalase and its regulator NO CATALASE ACTIVITY 1 (NCA1) promote autophagy-dependent cell death in Arabidopsis. Plant Cell 25, 4616-4626.
- Hagedorn, P.H., Flyvbjerg, H., MOller, I.M., 2007. Modelling NADH turnover in plant mitochondria. Physiol. Plant 120, 370-385.
- Halliwell, B., 1996. Antioxidants in human health and disease. Annu. Rev. Nutr. 16, 33-50.
- Han, Y., Chaouch, S., Mhamdi, A., Queval, G., Zechmann, B., Noctor, G., 2013a. Functional analysis of Arabidopsis mutants points to novel roles for glutathione in coupling H2O2 to activation of salicylic acid accumulation and signaling. Antioxid. Redox Signal. 18, 2087-2090.
- Han, Y., Mhamdi, A., Chaouch, S., Noctor, G., 2013b. Regulation of basal and oxidative stress-triggered jasmonic acid-related gene expression by glutathione. Plant Cell Environ. 36, 1135-1146.
- Hancock, J.T., Henson, D., Nyirenda, M., Desikan, R., Harrison, J., Lewis, M., Hughes, J., Neill, S.J., 2005. Proteomic identification of glyceraldehyde 3-phosphate dehydrogenase as an inhibitory target of hydrogen peroxide in Arabidopsis. Plant Physiol. Biochem. 43, 828-835.
- Hardeland, R., 2014. Melatonin in plants and other phototrophs - advances and gaps concerning the diversity of functions. J. Exp. Bot. http://dx.doi.org/ 10.1093/jxb/eru386.
- Harms, K., Von Ballmoos, P., Brunold, C., Hofgen, R., Hesse, H., 2000. Expression of a bacterial serine acetyltransferase in transgenic potato plants leads to increased levels of cysteine and glutathione. Plant J. 22, 335-343.
- Havaux, M., Eymery, F., Porfirova, S., Rey, P., Dormann, P., 2005. Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell 17, 3451-3469.
- Hebbelmann, I., Selinski, J., Wehmeyer, C., Goss, T., Voss, I., Mulo, P., Kangasjarvi, S., Aro, E.M., Oelze, M.L., Dietz, K.J., Nunes-Nesi, A., Do, P.T., Fernie, A.R., Talla, S.K., Raghavendra, A.S., Linke, V., Scheibe, R., 2012. Multiple strategies to prevent oxidative stress in Arabidopsis plants lacking the malate valve enzyme NADPmalate dehydrogenase. J. Exp. Bot. 63, 1445-1459.
- Henzler, T., Steudle, E., 2000. Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. J. Exp. Bot. 51, 2053-2066.
- Hoeberichts, F.A., Davoine, C., Vandorpe, M., Morsa, S., Ksas, B., Stassen, C., Triantaphylides, C., Van Breusegem, F., 2013. Cryptogein-induced transcriptional reprogramming in tobacco is light dependent. Plant Physiol. 163, 263-275.
- Holtgrefe, S., Gohlke, J., Starmann, J., Druce, S., Klocke, S., Altmann, B., Wojtera, J., Lindermayr, C., Scheibe, R., 2008. Regulation of plant cytosolic glyceraldehyde 3-phosphate dehydrogenase isoforms by thiol modifications. Physiol. Plant 133, 211-218.
- Hong, Z., Zhang, Z., Olson, J.M., Verma, D.P.S., 2001. A novel UDP-glucose transferase is part of the callose synthase complex and interacts with phragmoplastin at the forming cell plate. Plant Cell 13, 769-779.
- Hortensteiner, S., Krautler, B., 2011. Chlorophyll breakdown in higher plants. Biochim. Biophys. Acta 1807, 977-988.
- Hu, X., Zhang, A., Zhang, J., Jiang, M., 2006. Abscisic acid is a key inducer of hydrogen peroxide production in leaves of maize plants exposed to water stress. Plant Cell Physiol. 47, 1484-1495.
- Husar, S., Berthiller, F., Fujioka, S., Rozhon, W., Khan, M., Kalaivanan, F., Elias, L., Higgins, G.S., Li, Y., Schuhmacher, R., Krska, R., Seto, H., Vaistij, F.E., Bowles, D., Poppenberger, B., 2011. Overexpression of the UGT73C6 alters brassinosteroid glucoside formation in Arabidopsis thaliana. BMC Plant Biol. 11, 51.
- Jannat, R., Uraji, M., Hossain, M.A., Islam, M.M., Nakamura, Y., Mori, I.C., Murata, Y., 2012. Catalases negatively regulate methyl jasmonate signaling in guard cells. J. Plant Physiol. 169, 1012-1016.
- Jiang, K., Schwarzer, C., Lally, E., Zhang, S.B., Ruzin, S., Machen, T., Remington, S.J., Feldman, L., 2006. Expression and characterization of a redox-sensing green fluorescent protein (reduction-oxidation-sensitive green fluorescent protein) in Arabidopsis. Plant Physiol. 141, 397-403.
- Jubany-Mari, T., Alegre-Batlle, L., Jiang, K., Feldman, L.J., 2010. Use of a redox-sensing GFP (c-roGFP1) for real-time monitoring of cytosol redox status in Arabidopsis thaliana water-stressed plants. FEBS Lett. 584, 889-897.
- Jung, H.W., Tschaplinski, T.J., Wang, L., Glazebrook, J., Greenberg, J.T., 2009. Priming in systemic plant immunity. Science 324, 89-91.
- Karkonen, A., Fry, S.C., 2006. Effect of ascorbate and its oxidation products on H2O2 production in cell-suspension cultures of Picea abies and in the absence of cells. J. Exp. Bot. 57, 1633-1644.
- Kasimova, M.R., Grigiene, J., Krab, K., Hagedorn, P.H., Flyvbjerg, H., Andersen, P.E., MOller, I.M., 2006. The free NADH concentration is kept constant in plant mitochondria under different metabolic conditions. Plant Cell 18, 688-698.
- Kerchev, P., Muhlenbock, P., Denecker, J., Morreel, K., Hoeberichts, F., Van Der Kelen, K., Vandorpe, M., Nguyen, L., Audenaert, D., Van Breusegem, F., 2014. Activation of auxin signalling counteracts photorespiratory H2O2-dependent cell death. Plant Cell Environ. http://dx.doi.org/10.1111/pce.12250.
- Kim, K.C., Fan, B., Chen, Z., 2006. Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae. Plant Physiol. 142, 1180-1192.
- Konig, J., Baier, M., Horling, F., Kahmann, U., Harris, G., Schurmann, P., Dietz, K.J., 2002. The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux. Proc. Natl. Acad. Sci. U.S.A. 99, 5738-5743.
- Koster, J., Thurow, C., Kruse, K., Meier, A., Iven, T., Feussner, I., Gatz, C., 2012. Xenobiotic- and jasmonic acid-inducible signal transduction pathways have become interdependent at the Arabidopsis CYP81D11 Promoter1. Plant Physiol. 159, 391-402.
- Kwak, J.M., Mori, I.C., Pei, Z.M., Leonhardt, N., Torres, M.A., Dangl, J.L., Bloom, R.E., Bodde, S., Jones, J.D., Schroeder, J.I., 2003. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J. 22, 2623-2633.
- Li, Z., Keasling, J.D., Niyogi, K.K., 2012. Overlapping photoprotective function of vitamin E and carotenoids in Chlamydomonas. Plant Physiol. 158, 313-323.
- Li, F., Wang, J., Ma, C., Zhao, Y., Wang, Y., Hasi, A., Qi, Z., 2013a. Glutamate receptorlike channel3.3 is involved in mediating glutathione-triggered cytosolic calcium transients, transcriptional changes, and innate immunity responses in Arabidopsis. Plant Physiol. 162, 1497-1509.
- Li, S., Mhamdi, A., Clement, C., Jolivet, Y., Noctor, G., 2013b. Analysis of knockout mutants suggests that Arabidopsis NADP-MALIC ENZYME2 does not play an essential role in responses to oxidative stress of intracellular or extracellular origin. J. Exp. Bot. 64, 3605-3614.
- Li, S., Mhamdi, A., Trotta, A., Kangasjarvi, S., Noctor, G., 2014. The protein phosphatase subunit PP2A-B0 γ is required to suppress daylength-dependent pathogenesis responses triggered by intracellular oxidative stress. New Phytol. 202, 145-160.
- Lim, E.L., Doucet, C.J., Li, Y., Elias, L., Worrall, D., Spencer, S.P., Ross, J., Bowles, D.J., 2002. The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4- hydroxybenzoic acid, and other benzoates. J. Biol. Chem. 277, 586-592.
- Linster, C.L., Van Schaftingen, E., Hanson, A.D., 2013. Metabolite damage and its repair or pre-emption. Nat. Chem. Biol. 9, 72-80.
- Liu, G., Ji, Y., Bhuiyan, N.H., Pilot, G., Salvaraj, G., Zou, J., Wei, Y., 2010. Amino acid homeostasis modulates salicylic acid-associated redox status and defense responses in Arabidopsis. Plant Cell 22, 3845-3863.
- Loeffler, C., Berger, S., Guy, A., Durand, T., Bringmann, G., Dreyer, M., von Rad, U., Durner, J., Mueller, M.J., 2005. B1-phytoprostanes trigger plant defense and detoxification responses. Plant Physiol. 137, 328-340.
- Maere, S., Heymans, K., Kuiper, M., 2005. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21, 3448-3449.
- Mano, J., Miyatake, F., Hiraoka, E., Tamoi, M., 2009. Evaluation of the toxicity of stress-related aldehydes to photosynthesis in chloroplasts. Planta 230, 639- 648.
- Martin, M.N., Saladores, P.H., Lambert, E., Hudson, A.O., Leustek, T., 2007. Localization of members of the γ- glutamyl transpeptidase family identifies sites of glutathione and glutathione S -conjugate hydrolysis. Plant Physiol. 144, 1715-1732.
- Matthes, M., Bruce, T., Chamberlain, K., Pickett, J., Napier, J., 2011. Emerging roles in plant defense for cis-jasmone-induced cytochrome P450 CYP81D11. Plant Signal. Behav. 6 (4), 563-565.
- Meng, P.H., Raynaud, C., Tcherkez, G., Blanchet, S., Massoud, K., Domenichini, S., Henry, Y., Soubigou-Taconnat, L., Lelarge-Trouverie, C., Saindrenan, P., et al., 2009. Crosstalks between myo -inositol metabolism, programmed cell death and basal immunity in Arabidopsis. PLoS One 4, e7364.
- Mezzari, M.P., Walters, K., Jelinkova, M., Shih, M.C., Just, C.L., Schnoor, J.L., 2005. Gene expression and microscopic analysis of Arabidopsis exposed to chloroacetanilide herbicides and explosive compounds. A phytoremediation approach. Plant Physiol. 138, 858-869.
- Mhamdi, A., Noctor, G., 2014. Analysis of the roles of the Arabidopsis peroxisomal isocitrate dehydrogenase in leaf metabolism and oxidative stress. Environ. Exp. Bot. http://dx.doi.org/10.1016/j.envexpbot.2014.07.002.
- Mhamdi, A., Queval, G., Chaouch, S., Vanderauwera, S., Van Breusegem, F., Noctor, G., 2010a. Catalase in plants: a focus on Arabidopsis mutants as stress-mimic models. J. Exp. Bot. 61, 4197-4220.
- Mhamdi, A., Hager, J., Chaouch, S., Queval, G., Han, Y., Taconnat, Y., Saindrenan, P., Issakidis-Bourguet, E., Gouia, H., Renou, J.P., Noctor, G., 2010b. Arabidopsis GLUTATHIONE REDUCTASE 1 is essential for the metabolism of intracellular H2O2 and to enable appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant Physiol. 153, 1144-1160.
- Mhamdi, A., Mauve, C., Gouia, H., Saindrenan, P., Hodges, M., Noctor, G., 2010c. Cytosolic NADP-dependent isocitrate dehydrogenase contributes to redox homeostasis and the regulation of pathogen responses in Arabidopsis leaves. Plant Cell Environ. 33, 1112-1123.
- Mhamdi, A., Noctor, G., Baker, A., 2012. Plant catalases: peroxisomal redox guardians. Arch. Biochem. Biophys. 525, 181-194.
- Millar, A.H., Mittova, V., Kiddle, G., Heazlewood, J.L., Bartoli, C.G., Theodoulou, F.L., Foyer, C.H., 2003. Control of ascorbate synthesis by respiration and its implications for stress responses. Plant Physiol. 133, 443-447.
- Miller, G., Schlauch, K., Tam, R., Cortes, D., Torres, M.A., Shulaev, V., Dangl, J.L., Mittler, R., 2009. The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Science Signal. 2, ra45.
- Mittler, R., Zilinskas, B.A., 1991. Purification and characterization of pea cytosolic ascorbate peroxidase. Plant Physiol. 97, 962-968.
- MOller, I.M., Rasmusson, A.G., 1998. The role of NADP in the mitochondrial matrix. Trends Plant Sci. 3, 21-27.
- MOller, I.M., Sweetlove, L., 2010. ROS signaling - specificity is required. Trends Plant Sci. 15, 370-374.
- MOller, I.M., Jensen, P.E., Hansson, A., 2007. Oxidative modifications to cellular components in plants. Annu. Rev. Plant Biol. 58, 459-481.
- Morgan, B., Ezerina, D., Amaoko, T.N.E., Riemer, J., Seedorf, M., Dick, T.P., 2012. Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis. Nat. Chem. Biol. 9, 119-125.
- Moschou, P.N., Paschalidis, K.A., Delis, I.D., Andriopoulou, A.H., Lagiotis, G.D., Yakoumakis, D.I., Roubelakis-Angelakis, K.I., 2008. Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that direct tolerance responses in tobacco. Plant Cell 20, 1708-1724.
- Mueller, S., Hilbert, B., Dueckershoff, K., Roitsch, T., Krischke, M., Mueller, M.J., Berger, S., 2008. General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis. Plant Cell 20, 768-785.
- Muller, K., Linkies, A., Vreeburg, R.A.M., Fry, S.C., Krieger-Liszkay, A., Leubner- Metzger, G., 2009. In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth. Plant Physiol. 150, 1855-1865.
- Muller-Moule, P., Conklin, P.L., Niyogi, K.K., 2002. Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo. Plant Physiol. 128, 970-977.
- Mullineaux, P.M., Karpinski, S., Baker, N.R., 2006. Spatial dependence for hydrogen peroxide-directed signaling in light-stressed plants. Plant Physiol. 141, 346- 350.
- Mur, L.A.J., Kenton, P., Atzorn, R., Miersch, O., Wasternack, C., 2006. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol. 140, 249-262.
- Nagatoshi, Y., Nakamura, T., 2009. Arabidopsis HARMLESS TO OZONE LAYER protein methylates a glucosinolate breakdown product and functions in resistance to Pseudomonas syringae pv. maculicola. J. Biol. Chem. 284, 19301-19309.
- Navarova, H., Bernsdorff, F., Doring, A.C., Zeier, J., 2012. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell 24, 5123-5141.
- Niehaus, T.D., Richardson, L.G.L., Gidda, S.K., ElBadawi-Sidhu, M., Meissen, J.K., Mullen, R.T., Fiehn, O., Hanson, A.D., 2014. Plants utilize a highly conserved system for repair of NADH and NADPH hydrates. Plant Physiol. 165, 52-61.
- Nishizawa, A., Yabuta, Y., Shigeoka, S., 2010. Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol. 147, 1251-1263.
- Noctor, G., 2006. Metabolic signalling in defence and stress: the central roles of soluble redox couples. Plant Cell Environ. 29, 409-425.
- Noctor, G., Hager, J., Li, S., 2011. Biosynthesis of NAD and its manipulation in plants. Adv. Bot. Res. 58, 153-201.
- Noctor, G., Mhamdi, A., Queval, G., Foyer, C.H., 2013. Regulating the redox gatekeeper: vacuolar sequestration puts glutathione disulfide in its place. Plant Physiol. 163, 665-671.
- Noctor, G., Mhamdi, A., Foyer, C.H., 2014. The roles of reactive oxygen metabolism in drought stress: not so cut and dried. Plant Physiol. 164, 1636-1648.
- Nosarzewski, M., Downie, A.B., Wu, B., Archbold, D.D., 2012. The role of SORBITOL DEHYDROGENASE in Arabidopsis thaliana. Funct. Plant Biol. 39, 462-470.
- Nunes-Nesi, A., Carrari, F., Lytovchenko, A., Smith, A.M.O., Loureiro, M.E., Ratcliffe, R.G., Sweetlove, L.J., Fernie, A.R., 2005. Enhanced photosynthetic performance and growth as a consequence of decreasing mitochondrial malate dehydrogenase activity in transgenic tomato plants. Plant Physiol. 137, 611- 622.
- Obata, T., Matthes, A., Koszior, S., Lehmann, M., Araujo, W.L., Bock, R., Sweetlove, L.J., Fernie, A.R., 2011. Alteration of mitochondrial protein complexes in relation to metabolic regulation under short-term oxidative stress in Arabidopsis seedlings. Phytochemistry 72, 1081-1091.
- O'Brien, J.A., Daudi, A., Butt, V.S., Bolwell, G.P., 2012a. Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta 236, 765-779.
- O'Brien, J.A., Daudi, A., Finch, P., Butt, V.S., Whitelegge, J.P., Souda, P., Ausubel, F.M., Bolwell, G.P., 2012b. A peroxidase-dependent apoplastic oxidative burst in cultured Arabidopsis cells functions in MAMP-elicited defense. Plant Physiol. 158, 2013-2027.
- Ohkamu-Ohtsu, N., Oikawa, A., Zhao, P., Xiang, C., Saito, K., Oliver, D.J., 2008. A γ- glutamyl transpeptidase-independent pathway of glutathione catabolism to glutamate via 5-oxoproline in Arabidopsis. Plant Physiol. 148, 1603-1613.
- Ohkamu-Ohtsu, N., Sasaki-Sekimoto, Y., Oikawa, A., et al., 2011. 12-oxo-phytodienoic acid-glutathione conjugate is transported into the vacuole in Arabidopsis. Plant Cell Physiol. 52, 205-209.
- Oracz, K., Bouteau, H.E.M., Farrant, J.M., Cooper, K., Belghazi, M., Job, C., Job, D., Corbineau, F., Bailly, C., 2007. ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J. 50, 452-465.
- Palmieri, M.C., Lindermayr, C., Bauwe, H., Steinhauser, C., Durner, J., 2010. Regulation of plant glycine decarboxylase by S -nitrosylation and glutathionylation. Plant Physiol. 152, 1514-1528.
- Parisy, V., Poinssot, B., Owsianowski, L., Buchala, A., Glazebrook, J., Mauch, F., 2007. Identification of PAD2 as a γ- glutamylcysteine synthetase highlights the importance of glutathione in disease resistance in Arabidopsis. Plant J. 49, 159-172.
- Park, S.W., Li, W., Viehhauser, A., He, B., Kim, S., Nilsson, A.K., Andersson, M.X., Kittle, J.D., Ambavaram, M.M., Luan, S., Esker, A.R., Tholl, D., Cimini, D., Ellerstrom, M., Coaker, G., Mitchell, T.K., Pereira, A., Dietz, K.J., Lawrence, C.B., 2013. Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis. Proc. Natl. Acad. Sci. U.S.A. 110, 9559-9564.
- Parsons, H.T., Fry, S.C., 2012. Oxidation of dehydroascorbic acid and 2,3- diketogulonate under plant apoplastic conditions. Phytochemistry 75, 41-49.
- Parsons, H.T., Yasmin, T., Fry, S.C., 2011. Alternative pathways of dehydroascorbic acid degradation in vitro and in plant cell cultures: novel insights into vitamin C catabolism. Biochem. J. 440, 375-383.
- Pastori, G.M., Foyer, C.H., 2002. Common components, networks, and pathways of cross-tolerance to stress. The central role of ''redox'' and abscisic acid-mediated controls. Plant Physiol. 129, 460-468.
- Pastori, G.M., Kiddle, G., Antoniw, J., Bernard, S., Veljovic-Jovanovic, S., Verrier, P.J., Noctor, G., Foyer, C.H., 2003. Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell 15, 939-951.
- Pattanayak, G.K., Venkataramani, S., Hortensteiner, S., Kunz, L., Christ, B., Moulin, M., Smith, A.G., Okamoto, Y., Tamiaki, H., Sugishima, M., Greenberg, J.T., 2012. Accelerated cell death 2 suppresses mitochondrial oxidative bursts and modulates cell death in Arabidopsis. Plant J. 69, 589-600.
- Pavet, V., Olmos, E., Kiddle, G., Mowla, S., Kumar, S., Antoniw, J., Alvarez, M.E., Foyer, C.H., 2005. Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis. Plant Physiol. 139, 1291-1303.
- Pellny, T.K., Locato, V., Vivancos, P.D., Markovic, J., De Gara, L., Pallardo, F.V., Foyer, C.H., 2009. Pyridine nucleotide cycling and control of intracellular redox state in relation to poly (ADP-ribose) polymerase activity and nuclear localization of glutathione during exponential growth of Arabidopsis cells in culture. Mol. Plant 2, 442-456.
- Perez-Garcia, A., Canovas, F.M., Gallardo, F., Hirel, B., De Vicente, A., 1995. Differential expression of glutamine synthetase isoforms in tomato detached leaflets infected with Pseudomonas syringae pv. tomato. Mol. Plant Microbe Interact. 8, 96-103.
- Petriacq, P., de Bont, L., Hager, J., Didierlaurent, L., Mauve, C., Guerard, F., Noctor, G., Pelletier, S., Renou, J.P., Tcherkez, G., Gakiere, B., 2012. Inducible NAD overproduction in Arabidopsis alters metabolic pools and gene expression correlated with increased salicylate content and resistance to Pst-AvrRpm1. Plant J. 70, 650-665.
- Pignocchi, C., Foyer, C.H., 2003. Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. Curr. Opin. Plant Biol. 6, 379-389.
- Pruzinska, A., Anders, I., Tanner, G., Roca, M., Hortensteiner, S., 2003. Chlorophyll breakdown: pheophorbide a oxygenase is a Rieske-type iron-sulfur protein, encoded by the accelerated cell death 1 gene. Proc. Natl. Acad. Sci. U.S.A. 100, 15259-15264.
- Przybyla, D., Gobel, C., Imboden, A., Hamberg, M., Feussner, I., Apel, K., 2008. Enzymatic, but not non-enzymatic, 1O2-mediated peroxidation of polyunsaturated fatty acids forms part of the EXECUTER1-dependent stress response program in the flu mutant of Arabidopsis thaliana. Plant J. 54, 236-248.
- Queval, G., Noctor, G., 2007. A plate reader method for the measurement of NAD, NADP, glutathione, and ascorbate in tissue extracts: application to redox profiling during Arabidopsis rosette development. Anal. Biochem. 363, 58-69.
- Queval, G., Issakidis-Bourguet, E., Hoeberichts, F.A., Vandorpe, M., Gakiere, B., Vanacker, H., Miginiac-Maslow, M., Van Breusegem, F., Noctor, G., 2007. Conditional oxidative stress responses in the Arabidopsis photorespiratory mutant cat2 demonstrate that redox state is a key modulator of daylength-dependent gene expression and define photoperiod as a crucial factor in the regulation of H2O2-induced cell death. Plant J. 52, 640-657.
- Queval, G., Hager, J., Gakiere, B., Noctor, G., 2008. Why are literature data for H2O2 contents so variable? A discussion of potential difficulties in quantitative assays of leaf extracts. J. Exp. Bot. 59, 135-146.
- Queval, G., Thominet, D., Vanacker, H., Miginiac-Maslow, M., Gakiere, B., Noctor, G., 2009. H2O2-activated up-regulation of glutathione in Arabidopsis involves induction of genes encoding enzymes involved in cysteine synthesis in the chloroplast. Mol. Plant 2, 344-356.
- Queval, G., Jaillard, D., Zechmann, B., Noctor, G., 2011. Increased intracellular H2O2 availability preferentially drives glutathione accumulation in vacuoles and chloroplasts. Plant Cell Environ. 34, 21-32.
- Queval, G., Neukermans, J., Vanderauwera, S., Van Breusegem, F., Noctor, G., 2012. Daylength is a key regulator of transcriptomic responses to both CO2 and H2O2 in Arabidopsis. Plant Cell Environ. 35, 374-387.
- Rahantaniaina, M.-S., Tuzet, A., Mhamdi, A., Noctor, G., 2013. Missing links in understanding redox signaling via thiol/disulfide modulation: how is glutathione oxidized in plants? Front. Plant Sci. 4, 477.
- Ramel, F., Birtic, S., Ginies, C., Soubigou-Taconnat, L., Triantaphylides, C., Havaux, M., 2012. Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proc. Natl. Acad. Sci. U.S.A. 109, 5535- 5540.
- Rius, S.P., Casati, P., Iglesias, A.A., Gomez-Casati, D.F., 2006. Characterization of an Arabidopsis thaliana mutant lacking a cytosolic non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase. Plant Mol. Biol. 61, 945-957.
- Rizhsky, L., Hallak-Herr, E., Van Breusegem, F., Rachmilevitch, S., Barr, J., Rodermel, S., Inze, D., Mittler, R., 2002. Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. Plant J. 32, 329-342.
- Ruban, A.V., Johnson, M.P., Duffy, C.D.P., 2012. The photoprotective molecular switch in the photosystem II antenna. Biochim. Biophys. Acta 1817, 167-181.
- Saito, R., Shimakawa, G., Nishi, A., Iwamoto, T., Sakamoto, K., Yamamoto, H., Amako, K., Makino, A., Miyake, C., 2013. Functional analysis of the AKR4C subfamily family of Arabidopis thaliana: model structures, substrate specificity, acrolein toxicity, and responses to light and [CO2]. Biosci. Biotechnol. Biochem. 77, 2038-2045.
- Sappl, P.G., Carroll, A.J., Clifton, R., Lister, R., Whelan, J., Millar, A.H., Singh, K.B., 2009. The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress. Plant J. 58, 53-68.
- Sattler, S.E., Mene-Saffrane, L., Farmer, E.E., Krischke, M., Mueller, M.J., DellaPenna, D., 2006. Nonenzymatic lipid peroxidation reprograms gene expression and activates defense markers in Arabidopsis tocopherol-deficient mutants. Plant Cell 18, 3706-3720.
- Schafer, L., Feierabend, J., 2000. Photoinactivation and protection of glycolate oxidase in vitro and in leaves. Z. Naturforsch. C 55, 361-372.
- Scheibe, R., Backhausen, J.E., Emmerlich, V., Holtgrefe, S., 2005. Strategies to maintain redox homeostasis during photosynthesis under changing conditions. J. Exp. Bot. 56, 1481-1489.
- Schlaeppi, K., Bodenhausen, N., Buchala, A., Mauch, F., Reymond, P., 2008. The glutathione-deficient mutant pad2-1 accumulates lower amounts of glucosinolates and is more susceptible to the insect herbivore Spodoptera littoralis. Plant J. 55, 774-786.
- Schwarzlander, M., Fricker, M.D., Muller, C., Marty, L., Brach, T., Novak, J., Sweetlove, L.J., Hell, R., Meyer, A.J., 2008. Confocal imaging of glutathione redox potential in living plant cells. J. Microsc. 231, 299-316.
- Seifi, H.S., Van Bockhaven, J., Angenon, G., Hofte, M., 2013. Glutamate metabolism in plant disease and defense: friend or foe. Mol. Plant Microbe Interact. 26, 475- 485.
- Sharma, S., Villamor, J.G., Verslues, P.E., 2011. Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential. Plant Physiol. 157, 292-304.
- Shulaev, V., Cortes, D., Miller, G., Mittler, R., 2008. Metabolomics for plant stress response. Physiol. Plant 132, 199-208.
- Simon, C., Langlois-Meurinne, M., Didierlaurent, L., Chaouch, S., Bellvert, F., Massoud, K., Garmier, M., Thareau, V., Comte, G., Noctor, G., Saindrenan, P., 2014. The secondary metabolism glycosyltransferases UGT73B3 and UGT73B5 are components of redox status in resistance of Arabidopsis to Pseudomonas syringae pv. Tomato. Plant Cell Environ 37, 1114-1129. http://dx.doi.org/ 10.1111/pce.12221.
- Smirnoff, N., 2011. Vitamin C: the metabolism and functions of ascorbic acid in plants. Adv. Bot. Res. 59, 107-177.
- Smirnoff, N., Cumbes, Q., 1989. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28, 1057-1060.
- Smith, I.K., Kendall, A.C., Keys, A.J., Turner, J.C., Lea, P.J., 1985. The regulation of the biosynthesis of glutathione in leaves of barley (Hordeum vulgare L.). Plant Sci. 41, 11-17.
- Sparla, F., Zaffagnini, M., Wedel, N., Scheibe, R., Pupillo, P., Trost, P., 2005. Regulation of photosynthetic GAPDH dissected by mutants. Plant Physiol. 138, 2210-2219.
- Stitt, M., Muller, C., Matt, P., Gibon, Y., Carillo, P., Morcuende, R., Scheible, W.R., Krapp, A., 2002. Steps towards an integrated view of nitrogen metabolism. J. Exp. Bot. 53, 959-970.
- Studart-Guimaraes, C., Fait, A., Nunes-Nesi, A., Carrari, F., Usadel, B., Fernie, A.R., 2007. Reduced expression of succinyl-coenzyme A ligase can be compensated for by up-regulation of the γ -aminobutyrate shunt in illuminated tomato leaves. Plant Physiol. 145, 626-639.
- Stuttmann, J., Hubberten, H.-M., Rietz, S., Kaur, J., Muskett, P., Guerois, R., Bednarek, P., Hoefgen, R., Parker, J.E., 2011. Perturbation of Arabidopsis amino acid metabolism causes incompatibility with the adapted biotrophic pathogen Hyaloperonospora arabidopsidis. Plant Cell 23, 2788-2803.
- Su, T., Xu, J., Li, Y., Lei, L., Zhao, L., Yang, H., Feng, J., Liu, G., Ren, D., 2011. Glutathione-indole-3-acetonitrile is required for camalexin biosynthesis in Arabidopsis thaliana. Plant Cell 23, 364-380.
- Sudre, D., Gutierrez-Carbonell, E., Lattanzio, G., Rellan-Alvarez, R., Gaymard, F., Wohlgemuth, G., Fiehn, O., Alvarez-Fernandez, A., Zamarreno, A.M., Bacaicoa, E., Duy, D., Garcia-Mina, J.-M., Abadia, J., Philippar, K., Lopez-Millan, A.-F., Briat, J.- F., 2013. Iron-dependent modifications of the flower transcriptome, proteome, metabolome, and hormonal content in an Arabidopsis ferritin mutant. J. Exp. Bot. 64, 2665-2688.
- Szabados, L., Savoure, A., 2010. Proline: a multifunctional amino acid. Trends Plant Sci. 15, 89-97.
- Tada, Y., Spoel, S.H., Pajerowska-Mukhtar, K., Mou, Z., Song, J., Wang, C., Zuo, J., Dong, X., 2008. Plant immunity requires conformational charges of NPR1 via Snitrosylation and thioredoxins. Science 321, 952-956.
- Tanaka, R., Hirashima, M., Satoh, S., Tanaka, A., 2003. The Arabidopsis-accelerated cell death gene ACD1 is involved in oxygenation of pheophorbide a: inhibition of pheophorbide a oxygenase activity does not lead to the ''stay-green'' phenotype in Arabidopsis. Plant Cell Physiol. 44, 1266-1274.
- Taylor, N.L., Day, D.A., Millar, A.H., 2002. Environmental stress causes oxidative damage to plant mitochondria leading to inhibition of glycine decarboxylase. J. Biol. Chem. 277, 42663-42668.
- Taylor, N.L., Day, D.A., Millar, A.H., 2004. Targets of stress-induced oxidative damage in plant mitochondria and their impact on cell carbon/nitrogen metabolism. J. Exp. Bot. 55, 1-10.
- Thordal-Christensen, H., Zhang, Z., Wei, Y., Collinge, D.B., 1997. Subcellular localisation of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J. 11, 1187-1194.
- Tognetti, V.B., Van Aken, O., Morreel, K., Vandenbroucke, K., van de Cotte, B., De Clercq, I., Chiwocha, S., Fenske, R., Prinsen, E., Boerjan, W., Genty, B., Stubbs, K.A., Inze, D., Van Breusegem, F., 2010. Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. Plant Cell 22, 2660-2679.
- Torres, M.A., Dangl, J.L., Jones, J.D., 2002. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. U.S.A. 99, 517-522.
- Triantaphylides, C., Krischke, M., Hoeberichts, F.A., Ksas, B., Gresser, G., Havaux, M., Van Breusegem, F., Mueller, M.J., 2008. Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol. 148, 960-968.
- Trotta, A., Wrzaczek, M., Scharte, J., Tikkanen, M., Konert, G., Rahikainen, M., Holmstrom, M., Hiltunen, H.M., Rips, S., Sipari, N., et al., 2011. Regulatory subunit B'gamma of protein phosphatase 2A prevents unnecessary defense reactions under low light in Arabidopsis. Plant Physiol. 156, 1464-1480.
- Tsukada, Y., Fang, J., Erdjument-Bromage, H., Warren, M.E., Borchers, C.H., Tempst, P., Zhang, Y., 2006. Histone demethylation by a family of JmjC domaincontaining proteins. Nature 16, 811-821.
- Valderrama, R., Corpas, F.J., Carreras, A., Gomez-Rodriguez, M.V., Chaki, M., Pedrajas, J.R., Fernandez-Ocana, A., del Rio, L.A., Barroso, J.B., 2006. The dehydrogenasemediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants. Plant Cell Environ. 29, 1449-1459.
- Van Breusegem, F., Bailey-Serres, J., Mittler, R., 2008. Unraveling the tapestry of networks involving reactive oxygen species in plants. Plant Physiol. 147, 978- 984.
- Vanacker, H., Carver, T.L.W., Foyer, C.H., 2000. Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hypersensitive response in the barley-powdery mildew interaction. Plant Physiol. 123, 1289- 1300.
- Vandenabeele, S., Vanderauwera, S., Vuylstecke, M., Rombauts, S., Langebartels, C., Seidlitz, H.K., Zabeau, M., Van Montagu, M., Inze, D., Van Breusegem, F., 2004. Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana. Plant J. 39, 45-58.
- Vanderauwera, S., Zimmermann, P., Rombauts, S., Vandenabeele, S., Langebartels, C., Gruissem, W., Inze, D., Van Breusegem, F., 2005. Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol. 139, 806-821.
- Vanderauwera, S., De Block, M., Van de Steene, N., De Cottet, B.V., Metzlaff, M., Van Breusegem, F., 2007. Silencing of poly(ADP-ribose) polymerase in plants alters abiotic stress signal transduction. Proc. Natl. Acad. Sci. U.S.A. 104, 15150- 15155.
- Vanderauwera, S., Suzuki, N., Miller, G., van de Cotte, B., Morsa, S., Ravanat, J.L., Hegie, A., Triantaphylides, C., Shulaev, V., Van Montagu, M.C.E., Van Breusegem, F., Mittler, R., 2011. Extranuclear protection of chromosomal DNA from oxidative stress. Proc. Natl. Acad. Sci. U.S.A. 108, 1711-1716.
- Veljovic-Jovanovic, S.D., Pignocchi, C., Noctor, G., Foyer, C.H., 2001. Low ascorbic acid in the vtc-1 mutant of Arabidopsis is associated with decreased growth and intracellular redistribution of the antioxidant system. Plant Physiol. 127, 426- 435.
- Veljovic-Jovanovic, S.D., Noctor, G., Foyer, C.H., 2002. Are leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate. Plant Physiol. Biochem. 40, 501- 507.
- Verhoeven, A.S., Demmig-Adams, B., Adams, W.W., 1997. Enhanced employment of the xanthophyll cycle and thermal energy dissipation in spinach exposed to high light and N stress. Plant Physiol. 113, 817-824.
- Voll, L.M., Zell, M.B., Engelsdorf, T., Saur, A., Wheeler, M.G., Drincovich, M.F., Weber, A.P.M., Maurino, V.G., 2012. Loss of cytosolic NADP-malic enzyme 2 in Arabidopsis thaliana is associated with enhanced susceptibility to Colletotrichum higginsianum. New Phytol. 195, 189-202.
- Wagner, D., Przybyla, D., Op den Camp, R., Kim, C., Landgraf, F., Lee, K.P., Wursch, M., Laloi, C., Nater, M., Hideg, E., Apel, K., 2004. The genetic basis of singlet oxygeninduced stress responses of Arabidopsis thaliana. Science 306, 1183-1185.
- Wardman, P., 2007. Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic. Biol. Med. 43, 995-1032.
- Wildermuth, M.C., Dewdney, J., Wu, G., Ausubel, F.M., 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414, 562-565.
- Winger, A.M., Millar, A.H., Day, D.A., 2005. Sensitivity of plant mitochondrial terminal oxidases to the lipid peroxidation product 4-hydroxy-2-nonenal (HNE). Biochem. J. 387, 865-870.
- Winter, H., Robinson, D.G., Heldt, H.W., 1994. Subcellular volumes and metabolite concentrations in spinach leaves. Planta 193, 530-535.
- Winterbourn, C., 2014. The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochim. Biophys. Acta 1840, 730-738.
- Xiao, Y., Savchenko, T., Baidoo, E.E.K., Chehab, W.E., Hayden, D.M., Tolstikov, V., Corwin, J.A., Kliebenstein, D.J., Keasling, J.D., Dehesh, K., 2012. Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress-response genes. Cell 149, 1525-1535.
- Yamauchi, Y., Hasegawa, A., Taninaka, A., Mizutani, M., Sugimoto, Y., 2011. NADPHdependent reductases involved in the detoxification of reactive carbonyls in plants. J. Biol. Chem. 286, 6999-7009.
- Yao, N., Greenberg, J.T., 2006. Arabidopsis ACCELERATED CELL DEATH2 modulates programmed cell death. Plant Cell 18, 397-411.
- Ye, Q., Steudle, E., 2005. Oxidative gating of water channels (aquaporins) in corn roots. Plant Cell Environ. 29, 459-470.
- Zaffagnini, M., Bedhomme, M., Lemaire, S.D., Trost, P., 2012. The emerging roles of protein glutathionylation in chloroplasts. Plant Sci. 185-186, 86-96.
- Zechmann, B., Liou, L.C., Koffler, B.E., Horvat, L., Tomasic, A., Fulgosi, H., Zhang, Z., 2011. Subcellular distribution of glutathione and its dynamic changes under oxidative stress in the yeast Saccharomyces cerevisiae. FEMS Yeast Res. 11, 631- 642.
- Zhang, X., Mou, 2009. Extracellular pyridine nucleotides induce PR gene expression and disease resistance in Arabidopsis. Plant J. 57, 302-312.
- Zhang, Y., Butelli, E., De Stefano, R., Schoonbeek, H.-J., Magusin, A., Pagliarani, C., Wellner, N., Hill, L., Orzaez, D., Granell, A., Jones, J.D.G., Martin, C., 2013. Anthocyanins double the shelf life of tomatoes by delaying overripening and reducing susceptibility to gray mold. Curr. Biol. 23, 1094-1100.