Published September 30, 2015 | Version v1
Journal article Restricted

Prevalence and specificity of Baeyer-Villiger monooxygenases in fungi

  • 1. Laboratory of Biotechnology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia

Description

Butinar, Lorena, Mohorčič, Martina, Deyris, Valérie, Duquesne, Katia, Iacazio, Gilles, Claeys-Bruno, Magalie, Friedrich, Josepha, Alphand, Véronique (2015): Prevalence and specificity of Baeyer-Villiger monooxygenases in fungi. Phytochemistry 117: 144-153, DOI: 10.1016/j.phytochem.2015.06.009, URL: http://dx.doi.org/10.1016/j.phytochem.2015.06.009

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:073C0B4CFFF0155DFFC7FB494D4F4363
URL
http://publication.plazi.org/id/073C0B4CFFF0155DFFC7FB494D4F4363

References

  • Alfieri, A., Malito, E., Orru, R., Fraaije, M.W., Mattevi, A., 2008. Revealing the moonlighting role of NADP in the structure of a flavin-containing monooxygenase. Proc. Natl. Acad. Sci. USA 105, 6572-6577.
  • Alphand, V., Furstoss, R., 2000. Microbiological transformations 44. Optimisation of a new Baeyer-Villigerase activity: application to the stereospecific oxidation of 3-phenylcyclobutanone. J. Mol. Catal. B 9, 209-217.
  • Alphand, V., Furstoss, R., 1992. Microbiological transformations. 22. Microbiologically mediated Baeyer-Villiger reactions: a unique route to several bicyclic gamma-lactones in high enantiomeric purity. J. Org. Chem. 57, 1306-1309.
  • Alphand, V., Mazzini, C., Lebreton, J., Furstoss, R., 1998. A new microorganism for highly stereospecific Baeyer-Villiger oxidation of prochiral cyclobutanones. J. Mol. Catal. B 5, 219-221.
  • Alphand, V., Wohlgemuth, R., 2010. Applications of Baeyer-Villiger monooxygenases in organic synthesis. Curr. Org. Chem. 14, 1928-1965.
  • Andrade, L.H., Pedrozo, E.C., Leite, H.G., Brondani, P.B., 2011. Oxidation of organoselenium compounds. A study of chemoselectivity of phenylacetone monooxygenase. J. Mol. Catal. B 73, 63-66.
  • Beneventi, E., Niero, M., Motterle, R., Fraaije, M., Bergantino, E., 2013. Discovery of Baeyer-Villiger monooxygenases from photosynthetic eukaryotes. J. Mol. Catal. B 98, 145-154.
  • Bosserman, M.A., Downey, T., Noinaj, N., Buchanan, S.K., Rohr, J., 2013. Molecular insight into substrate recognition and catalysis of Baeyer-Villiger monooxygenase MtmOIV, the key frame-modifying enzyme in the biosynthesis of anticancer agent mithramycin. ACS Chem. Biol. 8, 2466-2477.
  • Carballeira, J.D., Alvarez, E., Sinisterra, J.V., 2004. Biotransformation of cyclohexanone using immobilized Geotrichum candidum NCYC49: factors affecting the selectivity of the process. J. Mol. Catal. B 28, 25-32.
  • Carnell, A., Willetts, A., 1992. Biotransformations by fungi - regioselective plus stereoselective Baeyer-Villiger oxidations by dematiaceous fungi. Biotechnol. Lett. 14, 17-20.
  • Donova, M.V., Egorova, O.V., 2012. Microbial steroid transformations: current state and prospects. Appl. Microbiol. Biotechnol. 94, 1423-1447.
  • Dudek, H.M., Torres Pazmino, D.E., Rodriguez, C., de Gonzalo, G., Gotor, V., Fraaije, M.W., 2010. Investigating the coenzyme specificity of phenylacetone monooxygenase from Thermobifida fusca. Appl. Microbiol. Biotechnol. 88, 1135-1143.
  • Fairlamb, I.J.S., Grant, S., Grogan, G., Maddrell, D.A., Nichols, J.C., 2004. A one-pot remote allylic hydroxylation and Baeyer-Villiger oxidation of a bicyclo[3.2.0]hept-2-en-6-one by Cunninghamella echinulata NRRL 3655. Org. Biomol. Chem. 2, 1831.
  • Fantin, G., Giovannini, P.P., Guerrini, A., Maietti, S., Medici, A., Pedrini, P., 2006. Enantioselective Baeyer-Villiger oxidation of bicyclo[3.2. 0]hept-2-en-6-one with fungi: optimization of biotransformation and use of TiO2 as support of cell growth. Biotechnol. Lett. 28, 805-810.
  • Ferroni, F.M., Smit, M.S., Opperman, D.J., 2014. Functional divergence between closely related Baeyer-Villiger monooxygenases from Aspergillus flavus. J. Mol. Catal. B 107, 47-54.
  • Fill, T.P., da Silva, J.V., de Oliveira, K.T., da Silva, B.F., Rodrigues-Fo, E., 2012. Oxidative potential of some endophytic fungi using 1-indanone as a substrate. J. Microbiol. Biotechnol. 22, 832-837.
  • Fraaije, M.W., Kamerbeek, N.M., van Berkel, W.J.H., Janssen, D.B., 2002. Identification of a Baeyer-Villiger monooxygenase sequence motif. FEBS Lett. 518, 43-47.
  • Fraga, B.M., Guillermo, R., Hernandez, M.G., Chamy, M.C., Garbarino, J.A., 2009. Biotransformation of two ent-pimara-9(11),15-diene derivatives by Gibberella fujikuroi. J. Nat. Prod. 72, 87-91.
  • Fried, J., Thoma, R.W., Klinsber, A., 1953. Oxidation of steroids by microorganisms. III. Sides chain degradation, ring D cleavage and dehydrogenation in ring A. J. Am. Chem. Soc. 75, 5768-5769.
  • Frisvad, J.C., Andersen, B., Thrane, U., 2008. The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol. Res. 112, 231-240.
  • Fuganti, C., Minut, J., Fantoni, G.P., Servi, S., 1998. On the microbial transformation of alpha, beta-unsaturated aryl ketones by the fungus Beauveria bassiana. J. Mol. Catal. B 4, 47-52.
  • Fujii, M., Akita, H., Ida, Y., Nakagawa, T., Nakamura, K., 2007. Control of chemoselectivity of microbial reaction with resin adsorbent: enhancement of Baeyer-Villiger oxidation over reduction. Appl. Microbiol. Biotechnol. 77, 45- 51.
  • Geitner, K., Rehdorf, J., Snajdrova, R., Bornscheuer, U.T., 2010. Scale-up of Baeyer- Villiger monooxygenase-catalyzed synthesis of enantiopure compounds. Appl. Microbiol. Biotechnol. 88, 1087-1093.
  • Gibson, M., Nur-e-alam, M., Lipata, F., Oliveira, M.A., Rohr, J., 2005. Characterization of kinetics and products of the Baeyer-Villiger oxygenase MtmOIV, the key enzyme of the biosynthetic pathway toward the natural product anticancer drug mithramycin from Streptomyces argillaceus. J. Am. Chem. Soc. 127, 17594- 17595.
  • Goncalvez, R.A., Porto, A.L.M., Pinheiro, L., Cagnon, J.R., Manfio, G., Marsaioli, A.J., 2004. Multibioreaction methodology for Baeyer-Villiger monooxygenase monitoring. Food Technol. Biotechnol. 42, 355-361.
  • Hasegawa, Y., Nakai, Y., Tokuyama, T., Iwaki, H., 2000. Purification and characterization of cyclohexanone 1,2-monooxygenase from Exophiala jeanselmei strain KUFI-6N. Biosci. Biotechnol. Biochem. 64, 2696-2698.
  • Hilker, I., Gutierrez, M.C., Alphand, V., Wohlgemuth, R., Furstoss, R., 2004. Microbiological transformations 57. Facile and efficient resin-based in situ SFPR preparative-scale synthesis of an enantiopure ''Unexpected'' lactone regioisomer via a Baeyer- Villiger oxidation process. Org. Lett. 6, 1955-1958.
  • Hilker, I., Gutierrez, M.C., Furstoss, R., Ward, J., Wohlgemuth, R., Alphand, V., 2008. Preparative scale Baeyer-Villiger biooxidation at high concentration using recombinant Escherichia coli and in situ substrate feeding and product removal process. Nat. Protoc. 3, 546-554.
  • Hilker, I., Wohlgemuth, R., Alphand, V., Furstoss, R., 2005. Microbial transformations 59: first kilogram scale asymmetric microbial Baeyer-Villiger oxidation with optimized productivity using a resin-based in situ SFPR strategy. Biotechnol. Bioeng. 92, 702-710.
  • Iwaki, H., Grosse, S., Bergeron, H., Leisch, H., Morley, K., Hasegawa, Y., Lau, P.C.K., 2013. Camphor pathway redux: functional recombinant expression of 2,5- and 3,6-diketocamphane monooxygenases of Pseudomonas putida ATCC 17453 with their cognate flavin reductase catalyzing Baeyer-Villiger reactions. Appl. Environ. Microbiol. 79, 3282-3293.
  • Jensen, C.N., Cartwright, J., Ward, J., Hart, S., Turkenburg, J.P., Ali, S.T., Allen, M.J., Grogan, G., 2012. A flavoprotein monooxygenase that catalyses a Baeyer- Villiger reaction and thioether oxidation using NADH as the nicotinamide cofactor. ChemBioChem 13, 872-878.
  • Kawamoto, M., Utsukihara, T., Abe, C., Sato, M., Saito, M., Koshimura, M., Kato, N., Horiuchi, C.A., 2008. Biotransformation of (+/- )-2-methylcyclohexanone by fungi. Biotechnol. Lett. 30, 1655-1660.
  • Keppler, A.F., Porto, A.L.M., Schoenlein-Crusius, I.H., Comasseto, J.V., Andrade, L.H., 2005. Enzymatic evaluation of different Aspergillus strains by biotransformation of cyclic ketones. Enzyme Microb. Technol. 36, 967-975.
  • Konigsberger, K., Braunegg, G., Faber, K., Griengl, H., 1990. Baeyer-Villiger oxidation of bicyclic ketones by cylindrocarpon destructans ATCC 11011. Biotechnol. Lett. 12, 509-514.
  • Krow, G.R., 2004. The Baeyer-Villiger oxidation of ketones and aldehydes. In: John Wiley & Sons, Inc. (Ed.), Organic Reactions. John Wiley & Sons Inc., Hoboken, NJ, USA.
  • Leipold, F., Wardenga, R., Bornscheuer, U.T., 2012. Cloning, expression and characterization of a eukaryotic cycloalkanone monooxygenase from Cylindrocarpon radicicola ATCC 11011. Appl. Microbiol. Biotechnol., 1-13
  • Leisch, H., Morley, K., Lau, P.C.K., 2011. Baeyer-Villiger monooxygenases: more than just green chemistry. Chem. Rev. 111, 4165-4222.
  • Malito, E., Alfieri, A., Fraaije, M.W., Mattevi, A., 2004. Crystal structure of a Baeyer- Villiger monooxygenase. Proc. Natl. Acad. Sci. USA 101, 13157-13162.
  • Mascotti, M.L., Ayub, M.J., Dudek, H., Sanz, M.K., Fraaije, M.W., 2013. Cloning, overexpression and biocatalytic exploration of a novel Baeyer-Villiger monooxygenase from Aspergillus fumigatus Af293. AMB Express 3, 1-10.
  • Mazzini, C., Lebreton, J., Alphand, V., Furstoss, R., 1997a. A chemoenzymatic strategy for the synthesis of enantiopure (R)-(- )-baclofen. Tetrahedron Lett. 38, 1195- 1196.
  • Mazzini, C., Lebreton, J., Alphand, V., Furstoss, R., 1997b. Enantiodivergent chemoenzymatic synthesis of (R)-and (S)-b- proline in high optical purity. J. Org. Chem. 62, 5215-5218.
  • Osorio-Lozada, A., Tovar-Miranda, R., Olivo, H.F., 2008. Biotransformation of Npiperidinylacetophenone with Beauveria bassiana ATCC-7159. J. Mol. Catal. B 55, 30-36.
  • Ouazzani-Chahdi, J., Buisson, D., Azerad, R., 1987. Preparation of both enantiomers of a chiral lactone through combined microbiological reduction and oxidation. Tetrahedron Lett. 28, 1109-1112.
  • Peterson, D.H., Eppstein, S.H., Meister, P.D., Murray, H.C., Leigh, H.M., Weintraub, A., Reineke, L.M., 1953. Microbiological transformations of steroids IX. degradation of C21 steroids to C19 ketones and to testololactone. J. Am. Chem. Soc. 75, 5768-5769.
  • Pinedo-Rivilla, C., Cafeu, M.C., Casatejada, J.A., Araujo, A.R., Collado, I.G., 2009. Asymmetric microbial reduction of ketones: absolute configuration of trans-4- ethyl-1-(1S-hydroxyethyl)cyclohexanol. Tetrahedron Asymmetry 20, 2666- 2672.
  • Qiao, K., Chooi, Y.H., Tang, Y., 2011. Identification and engineering of the cytochalasin gene cluster from Aspergillus clavatus NRRL 1. Metab. Eng. 13, 723-732.
  • Reignier, T., de Berardinis, V., Petit, J.-L., Mariage, A., Hamze, K., Duquesne, K., Alphand, V., 2014. Broadening the scope of Baeyer-Villiger monooxygenase activities toward a,b- unsaturated ketones: a promising route to chiral enollactones and ene-lactones. Chem. Commun. 50, 7793.
  • Riebel, A., de Gonzalo, G., Fraaije, M.W., 2013. Expanding the biocatalytic toolbox of flavoprotein monooxygenases from Rhodococcus jostii RHA1. J. Mol. Catal. B 88, 20-25.
  • Riebel, A., Dudek, H.M., de Gonzalo, G., Stepniak, P., Rychlewski, L., Fraaije, M.W., 2012. Expanding the set of rhodococcal Baeyer-Villiger monooxygenases by high-throughput cloning, expression and substrate screening. Appl. Microbiol. Biotechnol., 1-11
  • Riebel, A., Fink, M.J., Mihovilovic, M.D., Fraaije, M.W., 2014. Type II flavin-containing monooxygenases: a new class of biocatalysts that harbors Baeyer-Villiger monooxygenases with a relaxed coenzyme specificity. ChemCatChem 6, 1112- 1117.
  • Schulz, F., Leca, F., Hollmann, F., Reetz, M.T., 2005. Towards practical biocatalytic Baeyer-Villiger reactions: applying a thermostable enzyme in the gram-scale synthesis of optically-active lactones in a two-liquid-phase system. Beilstein J. Org. Chem. 1, 10.
  • Willetts, A., 1997. Structural studies and synthetic applications of Baeyer-Villiger monooxygenases. Trends Biotechnol. 15, 55-62.
  • Yang, J., Wang, S., Lorrain, M.J., Rho, D., Abokitse, K., Lau, P.C.K., 2009. Bioproduction of lauryl lactone and 4-vinyl guaiacol as value-added chemicals in two-phase biotransformation systems. Appl. Microbiol. Biotechnol. 84, 867-876.
  • Zhang, Z.-G., Parra, L.P., Reetz, M.T., 2012. Protein engineering of stereoselective Baeyer-Villiger monooxygenases. Chem. Eur. J. 18, 10160-10172.
  • Zhou, L., Liu, X., Ji, J., Zhang, Y., Hu, X., Lin, L., Feng, X., 2012. Enantioselective Baeyer-Villiger oxidation: desymmetrization of meso cyclic ketones and kinetic resolution of racemic 2-arylcyclohexanones. J. Am. Chem. Soc. 134, 17023- 17026.