Published August 31, 2019 | Version v1
Journal article Restricted

Identification and characterization of (+)-α-bisabolol and 7-epi-silphiperfol- 5-ene synthases from Artemisia abrotanum

  • 1. ∗ & Department of Biotechnology, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan

Description

Muangphrom, Paskorn, Misaki, Momoka, Suzuki, Munenori, Shimomura, Masaya, Suzuki, Hideyuki, Seki, Hikaru, Muranaka, Toshiya (2019): Identification and characterization of (+)-α-bisabolol and 7-epi-silphiperfol- 5-ene synthases from Artemisia abrotanum. Phytochemistry 164: 144-153, DOI: 10.1016/j.phytochem.2019.05.010, URL: http://dx.doi.org/10.1016/j.phytochem.2019.05.010

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

References

  • Abdallah, I.I., van Merkerk, R., Klumpenaar, E., Quax, W.J., 2018. Catalysis of amorpha-4,11-diene synthase unraveled and improved by mutability landscape guided engineering. Sci. Rep. 8, 9961. https://doi.org/10.1038/s41598-018-28177-4.
  • Adams, R.P., 2007. Identification of Essential Oil Components by Gas Chromatography/ Mass Spectrometry, fourth ed. Allured Publishing Corporation, Illinois.
  • Albertti, L.A.G., Delatte, T.L., de Farias, K.S., Boaretto, A.G., Verstappen, F., van Houwelingen, A., Cankar, K., Carollo, C.A., Bouwmeester, H.J., Beekwilder, J., 2018. Identification of the bisabolol synthase in the endangered candeia tree (Eremanthus erythropappus (DC) McLeisch). Front. Plant Sci. 9, 1340. https://doi.org/10.3389/ fpls.2018.01340.
  • Amouzou, E., Ayer, W.A., Browne, L.M., 1989. Antifungal sesquiterpenoids from an arthroconidial fungus. J. Nat. Prod. 52, 1042-1054. https://doi.org/10.1021/ np50065a022.
  • Attia, M., Kim, S.U., Ro, D.K., 2012. Molecular cloning and characterization of (+)-epi -αbisabolol synthase, catalyzing the first step in the biosynthesis of the natural sweetener, hernandulcin, in Lippia dulcis. Arch. Biochem. Biophys. 527, 37-44. https://doi. org/10.1016/j.abb.2012.07.010.
  • Bertea, C.M., Voster, A., Verstappen, F.W.A., Maffei, M., Beekwilder, J., Bouwmeester, H.J., 2006. Isoprenoid biosynthesis in Artemisia annua: cloning and heterologous expression of a germacrene A synthase from a glandular trichome cDNA library. Arch. Biochem. Biophys. 448, 3-12. https://doi.org/10.1016/j.abb.2006.02.026.
  • Bohlmann, F., Jakupovic, J., 1980. Neue sesquiterpene-kohlenwasserstoffe mit anomalen kohlenstoffgerust aus silphium-arten. Phytochemistry 19, 259-265. https://doi.org/ 10.1016/S0031-9422(00)81970-6.
  • Bouwmeester, H.J., Wallaart, T.E., Janssen, M.H.A., van Loo, B., Jansen, B.J.M., Posthumus, M.A., Schmidt, C.O., De Kraker, J.W., Konig, W.A., Franssen, M.C.R., 1999. Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin biosynthesis. Phytochemistry 52, 843-854. https://doi.org/10.1016/S0031- 9422(99)00206-X.
  • Brahmkshatriya, P.P., Brahmkshatriya, P.S., 2013. Chapter 86: terpenes: Chemistry, biological role, and therapeutic applications. In: Ramawat, K.G., Merillon, J.M. (Eds.), Natural Products Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes. Springer Verlag, Heidelberg, pp. 2665-2691.
  • Brock, N.L., Dickschat, J.S., 2013. Chapter 87: biosynthesis of terpenoids. In: Ramawat, K.G., Merillon, J.M. (Eds.), Natural Products Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes. Springer Verlag, Heidelberg, pp. 2693-2732.
  • Brodin, K., Alahyar, H., Hedner, T., Sterner, O., Faergemann, J., 2007. In vitro activity of Artemisia abrotanum extracts against Malassezia Spp., Candida albicans and Staphylococcus aureus. Acta Derm. Venereol. 87, 540-542. https://doi.org/10.2340/ 00015555-0312.
  • Cai, Y., Jia, J.W., Crock, J., Lin, Z.X., Chen, X.Y., Croteau, R., 2002. A cDNA clone for βcaryophyllene synthase from Artemisia annua. Phytochemistry 61, 523-529. https:// doi.org/10.1016/S0031-9422(02)00265-0.
  • Caruthers, J.M., Kang, I., Rynkiewicz, M.J., Cane, D.E., Christianson, D.W., 2000. Crystal structure determination of aristolochene synthase from the blue cheese mold, Penicillium roqueforti. J. Biol. Chem. 275, 25533-25539. https://doi.org/10.1074/jbc. M000433200.
  • Chang, Y.J., Song, S.H., Park, S.H., Kim, S.U., 2000. Amorpha-4,11-diene synthase of Artemisia annua: cDNA isolation and bacterial expression of a terpene synthase involved in artemisinin biosynthesis. Arch. Biochem. Biophys. 383, 178-184. https:// doi.org/10.1006/abbi.2000.2061.
  • Chang, C.H., Wen, Z.H., Wang, S.K., Duh, C.Y., 2008. Capnellenes from the formosan soft coral Capnella imbricata. J. Nat. Prod. 71, 619-621. https://doi.org/10.1021/ np0706116.
  • Chen, X.J., Archelas, A., Furstoss, R., 1993. Microbiological transformation. 27. The first examples for preparative-scale enantioselective or diastereoselective epoxide hydrolyses using microorganisms. An unequivocal access to all four bisabolol stereoisomers. J. Org. Chem. 58, 5528-5532. https://doi.org/10.1021/jo00072a043.
  • Chow, J.Y., Tian, B.X., Ramamoorthy, G., Hillerich, B.S., Seidel, R.D., Almo, S.C., Jacobson, M.P., Poulter, C.D., 2015. Computational-guided discovery and characterization of a sesquiterpene synthase from Streptomyces clavuligerus. Proc. Natl. Acad. Sci. U.S.A. 112, 5661-5666. https://dx.doi.org/10.1073/2Fpnas.1505127112.
  • Christianson, D.W., 2006. Structural biology and chemistry of the terpenoid cyclases. Chem. Rev. 106, 3412-3442. https://doi.org/10.1021/cr050286w.
  • Christianson, D.W., 2017. Structural and chemical biology of terpenoid cyclases. Chem. Rev. 117, 11570-11648. https://doi.org/10.1021/acs.chemrev.7b00287.
  • Coates, R.M., Ho, J.Z., Klobus, M., Zhu, L., 1998. Carbocationic rearrangements of silphinane derivatives. J. Org. Chem. 63, 9166-9176. https://doi.org/10.1021/ jo971579v.
  • CRC Press/Taylor & Francis Group, 2018. Dictionary of Natural Products 27.2. http:// dnp.chemnetbase.com/faces/chemical/ChemicalSearch.xhtml, Accessed date: 26 March 2019.
  • Degenhardt, J., Kollner, T.G., Gershenzon, J., 2009. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70, 1621-1637. https://doi.org/10.1016/j.phytochem.2009.07.030.
  • Ee, S.F., Hussein, Z.A.M., Othman, R., Shaharuddin, N.A., Ismail, I., Zainal, Z., 2014. Functional characterization of sesquiterpene synthase from Polygonum minus. Sci. World J 840592. 2014. https://doi.org/10.1155/2014/840592.
  • Fang, X., Li, J.X., Huang, J.Q., Xiao, Y.L., Zhang, P., Chen, X.Y., 2017. Systematic identification of functional residues of Artemisia annua amorpha-4,11-diene synthase. Biochem. J. 474, 2191-2202. https://doi.org/10.1042/BCJ20170060.
  • Geldenhuys, W.J., Van der Schyf, C.J., 2007. Triquinane-based compounds as possible serotonin 5-HT6 receptor antagonists for the treatment of Alzheimer's disease. Med. Hypotheses 68, 81-86. https://doi.org/10.1016/j.mehy.2006.06.032.
  • Geng, F., Liu, J., Paquette, L.A., 2002. Three-component coupling via the squarate ester cascade as a concise route to the bioactive triquinane sesquiterpene hypnophilin. Org. Lett. 4, 71-73. https://doi.org/10.1021/ol0102388.
  • Grote, D., Hanel, F., Dahse, H.M., Seifert, K., 2008. Capnellenes from the soft coral Dendronephthya rubeola. Chem. Biodivers. 4, 1683-1693. https://doi.org/10.1002/ cbdv.200890157.
  • Gunther, K., Carle, R., Fleischhauer, I., Merget, S., 1993. Semi-preparative liquid-chromatographic separation of all four stereoisomers of α- bisabolol on tribenzoylcellulose. Fresenius J. Anal. Chem. 345, 787-790. https://doi.org/10.1007/BF00323012.
  • He, S.M., Wang, X., Yang, S.C., Dong, Y., Zhao, Q.M., Yang, J.L., Cong, K., Zhang, J.J., Zhang, G.H., Wang, Y., Fan, W., 2018. De novo transcriptome characterization of Rhodomyrtus tomentosa leaves and identification of genes involved in α/β- pinene and β- caryophyllene biosynthesis. Front. Plant Sci. 9, 1231. https://doi.org/10.3389/fpls. 2018.01231.
  • Hong, Y.J., Irmisch, S., Wang, S.C., Garms, S., Gershenzon, J., Zu, L., Kollner, T.G., Tantillo, D.J., 2013. Theoretical and experimental analysis of the reaction mechanism of MrTPS2, a triquinane-forming sesquiterpene synthase from chamomile. Chem. Eur J. 19, 13590-13600. https://doi.org/10.1002/chem.201301018.
  • Hong, Y.J., Tantillo, D.J., 2014. Branching out from the bisabolyl cation. Unifying mechanistic pathways to barbatene, bazzanene, chamigrene, chamipinene, cumacrene, cuprenene, dunniene, isobazzanene, iso-γ- bisabolene, isochamigrene, laurene, microbiotene, sesquithujene, sesquisabinene, thujopsene, trichodiene, and widdradiene sesquiterpenes. J. Am. Chem. Soc. 136, 2450-2463. https://doi.org/10.1021/ ja4106489.
  • Hua, H., Matsuda, S.P.T., 1999. The molecular cloning of 8-epicedrol synthase from Artemisia annua. Arch. Biochem. Biophs. 369, 208-212. https://doi.org/10.1006/ abbi.2000.1962.
  • Huang, L., Lan, W.J., Deng, R., Feng, G.K., Xu, Q.Y., Hu, Z.Y., Zhu, X.F., Li, H.J., 2016. Additional new cytotoxic triquinane-type sesquiterpenoids chondrosterins K-M from the marine fungus. Chondrostereum sp. Mar. Drugs 14, 157. https://doi.org/10.3390/ md14090157.
  • Irmisch, S., Krause, S.T., Kunert, G., Gerchenzon, J., Degenhardt, J., Kollner, T.G., 2012. The organ-specific expression of terpene synthase genes contributes to the terpene hydrocarbon composition of chamomile essential oils. BMC Plant Biol. 12, 84. https://doi.org/10.1186/1471-2229-12-84.
  • Isegawa, M., Maeda, S., Tantillo, D.J., Morokuma, K., 2014. Predicting pathways for terpene formation from first principles - routes to known and new sesquiterpenes. Chem. Sci. 5, 1555-1560. https://doi.org/10.1039/c3sc53293c.
  • Jewison, T., Knox, C., Neveu, V., Djoumbou, Y., Guo, A.C., Lee, J., Liu, P., Mandal, R., Krishnamurthy, R., Sinelnikov, I., Wilson, M., Wishart, D.S., 2012. YMDB: the yeast metabolome database. Nucleic Acids Res. 40, D815-D820. https://doi.org/10.1093/ nar/gkr916.
  • Jones, C.G., Moniodis, J., Zulak, K.G., Scaffidi, A., Plummer, J.A., Ghisalberti, E.L., Barbour, E.L., Bohlmann, J., 2011. Sandalwood fragrance biosynthesis involved sesquiterpene synthases of both the terpene synthase (TPS)-a and TPS-b subfamilies, including santalene synthases. J. Biol. Chem. 286, 17445-17454. https://doi.org/10. 1074/jbc.M111.231787.
  • Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874. https://doi. org/10.1093/molbev/msw054.
  • Lesburg, C.A., Zhai, G., Cane, D.E., Christianson, D.W., 1997. Crystal structure of pentalenene synthase: mechanistic insights on terpenoid cyclization reactions in biology. Science 277, 1820-1824. https://doi.org/10.1126/science.277.5333.1820.
  • Li, J.X., Fang, X., Zhao, Q., Ruan, J.X., Yang, C.Q., Wang, L.J., Faraldos, J.A., Allemann, R.K., Chen, X.Y., Zhang, P., 2013. Rational engineering of plasticity residues of sesquiterpene synthases from Artemisia annua: product specificity and catalytic efficiency. Biochem. J. 451, 417-426. https://doi.org/10.1042/BJ20130041.
  • Liu, H.X., Tan, H.B., Chen, Y.C., Li, S.N., Li, H.H., Zhang, W.M., 2019. Cytotoxic triquinane-type sesquiterpenoids from the endophytic fungus Cerrena sp. A593. Nat. Prod. Res. https://doi.org/10.1080/14786419.2018.1539977.
  • Menut, C., Lamaty, G., Weyerstahl, P., Marschall, H., Seelmann, I., Amvam Zollo, P.H., 1997. Aromatic plants of tropical central Africa. Part XXXI. Tricyclic sesquiterpenes from the root essential oil of Echinops giganteus var. lelyi C.D. Adams. Flavour Flagr. J. 12, 415-421. https://doi.org/10.1002/(SICI)1099-1026(199711/12)12:6% 3C415::AID-FFJ666%3E3.0.CO;2-T.
  • Mercke, P., Bengtsson, M., Bouwmeester, H.J., Posthumus, M.A., Brodelius, P.E., 2000. Molecular cloning, expression and characterization of amorpha-4,11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua L. Arch. Biochem. Biophys. 381, 173-180. https://doi.org/10.1006/abbi.2000.1962.
  • Muangphrom, P., Seki, H., Suzuki, M., Komori, A., Nishiwaki, M., Mikawa, R., Fukushima, E.O., Muranaka, T., 2016. Functional analysis of amorpha-4,11-diene synthase (ADS) homologs from non-artemisinin-producing Artemisia species: the discovery of novel koidzumiol and (+)-α- bisabolol synthases. Plant Cell Physiol. 57, 1678-1688. https://doi.org/10.1093/pcp/pcw094.
  • Muangphrom, P., Seki, H., Matsumoto, S., Nishiwaki, M., Fukushima, E.O., Muranaka, M., 2018. Identification and characterization of a novel sesquiterpene synthase, 4- amorphen-11-ol synthase, from Artemisia maritima. Plant Biotechnol. 35, 113-121. https://dx.doi.org/10.5511/plantbiotechnology.18.0324a.
  • Obistioiu, D., Cristina, R.T., Schmerold, I., Chizzola, R., Stolze, K., Nichita, I., Chiurciu, V., 2014. Chemical characterization by GC-MS and in vitro activity against Candida albicans of volatile fractions prepared from Artemisia dracunculus, Artemisia abrotanum, Artemisia absinthium and Artemisia vulgaris. Chem. Cent. J. 8, 6. https://dx.doi. org/10.1186/1752-153X-8-6.
  • O'Brien, T.E., Bertolani, S.J., Tantillo, D.J., Siegel, J.B., 2016. Mechanistically informed predictions of binding modes for carbocation intermediates of a sesquiterpene synthase reaction. Chem. Sci. 7, 4009-4015. https://doi.org/10.1039/c6sc00635c.
  • O'Brien, T.E., Bertolani, S.J., Zhang, Y., Siegel, J.B., Tantillo, D.J., 2018. Predicting productive binding modes for substrates and carbocation intermediates in terpene synthase - bornyl diphosphate synthase as a representative case. ACS Catal. 8,
  • Pertea, G., Huang, X., Liang, F., Antonescu, V., Sultana, R., Karamycheva, S., Lee, Y., White, J., Cheung, F., Parvizi, B., Tsai, J., Quackenbush, J., 2003. TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19, 651-652. https://doi.org/10.1093/bioinformatics/btg034.
  • Picaud, S., Brodelius, M., Brodelius, P.E., 2005. Expression, purification and characterization of recombinant (E)-β- farnesene synthase from Artemisia annua. Phytochemistry 66, 961-967. https://doi.org/10.1016/j.phytochem.2005.03.027.
  • Pinedo, C., Wang, C.M., Pradier, J.M., Dalmais, B., Choquer, M., Le Pecheur, P., Morgant, G., Collado, I.G., Cane, D.E., Viaud, M., 2008. The sesquiterpene synthase from the botrydial biosynthetic gene cluster of the phytopathogen Botrytis cinereal. ACS Chem. Biol. 19, 791-801. https://doi.org/10.1021/cb800225v.
  • Qiu, Y., Lan, W.J., Li, H., Chen, L.P., 2018. Linear triquinane sesquiterpenoids: their isolation, structures, biological activities, and chemical synthesis. Molecules 23, 2095. https://doi.org/10.3390/molecules23092095.
  • Radulovi c, N.S., Blagojevic, P.D., Zlatkovic, B.K., Palic, R.M., 2009. A GC/MS profile of the volatile constituents of the aerial parts of Artemisia abrotanum L. (Asteraceae) from Serbia. S. Afr. J. Chem. 62, 30-32.
  • Ramirez-Gaona, M., Marcu, A., Pon, A., Guo, A.C., Sajed, T., Wishart, N.A., Karu, N., Feunang, Y.D., Arndt, D., Wishart, D.S., 2017. YMDB 2.0: a significantly expanded version of the yeast metabolome database. Nucleic Acids Res. 45, D440-D445. https://doi.org/10.1093/nar/gkw1058.
  • Remberg, P., Bjork, L., Hedner, T., Sterner, O., 2004. Characteristics, clinical effect profile and tolerability of a nasal spray preparation of Artemisia abrotanum L. for allergic rhinitis. Phytomedicine 11, 36-42. https://doi.org/10.1078/0944-7113-00350.
  • Ro, D.K., Paradis, E.M., Ouellet, M., Fisher, K.J., Newman, K.L., Ndungu, J.M., Ho, K.A., Eachus, R.A., Ham, T.S., Kirby, J., Chang, M.C.T., Withers, S.T., Shiba, Y., Sarpong, R., Keasling, J.D., 2006. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940-943. https://doi.org/10.1038/ nature04640.
  • Ro, D.K., Ouellet, M., Paradise, E.M., Burd, H., Eng, D., Paddon, C.J., Newman, J.D., Keasling, J.D., 2008. Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid. BMC Biotechnol. 8, 83-96. https://doi.org/10.1186/1472-6750-8-83.
  • Rynkiewicz, M.J., Cane, D.E., Christianson, D.W., 2001. Structure of trichodiene synthase from Fusarium sporotrichioides provides mechanistric inferences on the terpene cyclization cascade. Proc. Natl. Acad. Sci. U.S.A. 98, 13543-13548. https://doi.org/10. 1073/pnas.231313098.
  • Saitou, N., Nei, M., 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425. https://doi.org/10.1093/ oxfordjournals.molbev.a040454.
  • Salmon, M., Laurendon, C., Vardakou, M., Cheema, J., Defernez, M., Green, S., Faraldos, J.A., O'Maille, P.E., 2015. Emergence of terpene cyclization in Artemisia annua. Nat. Commun. 6, 6143. https://doi.org/10.1038/ncomms7143.
  • Shishova, E.Y., Di Costanzo, L., Cane, D.E., Christianson, D.W., 2007. X-ray crystal structure of aristolochene synthase from Aspergillus terreus and evolution of templates for the cyclization of farnesyl diphosphate. Biochemistry 46, 1941-1951. https://doi. org/10.1021/bi0622524.
  • Son, Y.J., Kwon, M., Ro, D.K., Kim, S.U., 2014. Enantioselective microbial synthesis of the indigenous natural product, (-)-α- bisabolol, by a sesquiterpene synthase from chamomile (Matricaria recutita). Biochem. J. 463, 239-248. https://doi.org/10.1042/ BJ20140306.
  • Tantillo, D.J., 2011. Biosynthesis via carbocations: theoretical studies on terpene formation. Nat. Prod. Rep. 28, 1035-1053. https://doi.org/10.1039/c1np00006c.
  • Tantillo, D.J., 2017. Importance of inherent substrate reactivity in enzyme-promoted carbocation cyclization/rearrangements. Angew. Chem. Int. Ed. 56, 10040-10045. https://doi.org/10.1002/anie.201702363.
  • The Plant List, 2013. The Plant List Version 1.1 A Working List of All Plant Species. http://www.theplantlist.org, Accessed date: 26 March 2019.
  • Tholl, D., Chen, F., Petri, J., Gershenzon, J., Pichersky, E., 2005. Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J. 45, 757-771. https://doi.org/10.1111/j.1365-313X. 2005.02417.x.
  • Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673.
  • Wang, G., Tang, W., Bidigare, R.R., 2005. Chapter 9 terpenoids as therapeutic drugs and pharmaceutical agents. In: Zhang, L., Demain, A.L. (Eds.), Natural Products: Drug Discovery and Therapeutic Medicine. Humana Press Inc., New Jersey, pp. 197-227.
  • Wang, S.C., Tantillo, D.J., 2008. Prediction of a new pathway to presilphiperfolanol. Org. Lett. 10, 4827-4830. https://doi.org/10.1021/ol801898v.
  • Wang, Y., Li, X., Jiang, Q., Sun, H., Jiang, J., Chen, S., Guan, Z., Fang, W., Chen, F., 2018. GC-MS analysis of the volatile constituents in the leaves of 14 compositae plants. Molecules 23, 166. https://dx.doi.org/10.3390/molecules23010166.
  • Weidner, K., 2012. Triquinanes: Hirsutene, Isocomene, Modhephene. https://www. scripps.edu/baran/images/grpmtgpdf/Weidner_Mar_12.pdf, Accessed date: 26 March 2019.
  • Wender, P., Dreyer, G., 1981. Synthetic studies on arene-olefin cycloadditions. II. Total synthesis of (+)-isocomene. Tetrahedron 37, 4445-4450. https://doi.org/10.1016/ 0040-4020(81)80011-7.
  • Wender, P.A., Singh, S.K., 1985. Synthetic studies on arene-olefin cycloadditions-VIII. Total syntheses of ( ± )-silphiperfol-6-ene, ( ± )-7αH-silphiperfol-5-ene and ( ± )-7βH-silphiperfol-5-ene. Tetrahedron Lett. 26, 5987-5990. https://doi.org/10. 1016/S0040-4039(00)98278-9.
  • Weyerstahl, P., Marschall-Weyerstahl, H., Schroder, M., Brendel, J., Kaul, K.V., 1991. Functionalised silphiperfolanes from Artemisia laciniata. Phytochemistry 30, 3349-3352. https://doi.org/10.1016/0031-9422(91)83207-2.
  • Weyerstahl, P., Brendel, J., 1992. Terpenes and Terpene Derivatives, XXIX. Synthesis and olfactive properties of (-)- and rac -silphiperfol-5-en-3-ol and of some tris-nor derivatives. Liebigs Ann. Chem. 669-678. 1992. https://doi.org/10.1002/jlac. 1992199201114.
  • Willmore, N.D., Goodman, R., Lee, H.H., Kennedy, R.B., 1992. A short synthesis of ( ± )-β- isocomene. J. Org. Chem. 57, 1216-1219. https://doi.org/10.1021/ jo00030a032.
  • Wu, Y.J., Zhu, Y.Y., Burnell, D.J., 1994. Spiroannulation approach to pentalenene, an angular triquinane sesquiterpene. J. Org. Chem. 59, 104-110. https://doi.org/10. 1021/jo00080a018.
  • Wu, S., Schalk, M., Clark, A., Miles, R.B., Coates, R., Chappell, J., 2006. Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat. Biotechnol. 24, 1441-1447. https://doi.org/10.1038/nbt1251.