Published July 31, 2019 | Version v1
Journal article Restricted

Phytosterol biosynthesis and production by diatoms (Bacillariophyceae)

  • 1. Climate Change Cluster, University of Technology Sydney, Sydney, Australia

Description

Jaramillo-Madrid, Ana Cristina, Ashworth, Justin, Fabris, Michele, Ralph, Peter J. (2019): Phytosterol biosynthesis and production by diatoms (Bacillariophyceae). Phytochemistry 163: 46-57, DOI: 10.1016/j.phytochem.2019.03.018, URL: http://dx.doi.org/10.1016/j.phytochem.2019.03.018

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFC9FFB2A9586D76FFD2FFEFFFF4FF98

References

  • Abumweis, S., Barake, R., Jones, P., 2008. Plant sterols/stanols as cholesterol lowering agents: a meta-analysis of randomized controlled trials. Food Nutr. Res. 52, 1811. https://doi.org/10.3402/fnr.v52i0.1811.
  • Ahmed, F., Zhou, W., Schenk, P.M., 2015. Pavlova lutheri is a high-level producer of phytosterols. Algal Res 10, 210-217. https://doi.org/10.1016/j.algal.2015.05.013.
  • Alappat, L., Valerio, M., Awad, A., 2010. Effect of vitamin D and B-sitosterol on immune function of macrophages. Int. Immunopharmacol. 10, 1390-1396. https://doi.org/ 10.1016/j.intimp.2010.08.003.
  • Aldini, R., Micucci, M., Cevenini, M., Fato, R., Bergamini, C., Nanni, C., Cont, M., Camborata, C., Spinozzi, S., Montagnani, M., Roda, G., Errico-grigioni, A.D., Rosini, F., Roda, A., Mazzella, G., Chiarini, A., Budriesi, R., 2014. Antiinflammatory effect of phytosterols in experimental murine colitis model: prevention, induction, remission study. PLoS One 9, e108112. https://doi.org/10.1371/journal.pone.0108112.
  • Armbrust, E.V., 2009. The life of diatoms in the world's oceans. Nature 459, 185-192. https://doi.org/10.1038/nature08057.
  • Armbrust, E.V., Berges, J.A., Bowler, C., Green, B.R., Martinez, D., Putnam, N.H., Zhou, S., Allen, A.E., Apt, K.E., Bechner, M., Brzezinski, M.A., Chaal, B.K., Chiovitti, A., Davis, A.K., Demarest, M.S., Detter, J.C., Glavina, T., Goodstein, D., Hadi, M.Z., Hellsten, U., Hildebrand, M., Jenkins, B.D., Lau, W.W.Y., Lane, T.W., Larimer, F.W., Lippmeier, J.C., Lucas, S., Montsant, A., Obornik, M., Parker, M.S., Palenik, B., Pazour, G.J., Richardson, P.M., Rynearson, T.A., Saito, M.A., Schwartz, D.C., Thamatrakoln, K., Valentin, K., Vardi, A., Wilkerson, F.P., Rokhsar, D.S., 2004. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306, 79-87. https://doi.org/10.1126/science.1101156.
  • Athanasakoglou, A., Grypioti, E., Michailidou, S., Ignea, C., Makris, A.M., Kalantidis, K., Masse, G., Argiriou, A., Verret, F., Kampranis, S.C., 2018. Isoprenoid Biosynthesis in the Diatom Haslea Ostrearia. New Phytol. https://doi.org/10.1111/nph.15586.
  • Athyros, V.G., Kakafika, A.I., Papageorgiou, A.A., Tziomalos, K., 2011. Effect of a plant stanol ester-containing spread , placebo spread, or Mediterranean diet on estimated cardiovascular risk and lipid, inflammatory and haemostatic factors. Nutr. Metabol. Cardiovasc. Dis. 21, 213-221. https://doi.org/10.1016/j.numecd.2009.08.014.
  • Barka, F., Angstenberger, M., Ahrendt, T., Lorenzen, W., Bode, H.B., Claudia, B., 2015. Identification of a triacylglycerol lipase in the diatom Phaeodactylum tricornutum. BBA - Mol. Cell Biol. Lipids. https://doi.org/10.1016/j.bbalip.2015.12.023.
  • Barrett, S.M., Volkman, J.K., Dunstan, G.A., 1995. Sterols of 14 species of marine diatoms (Bacillariophyta). J. Phycol. 31, 360-369. https://doi.org/10.1111/j.0022-3646. 1995.00360.x.
  • Beck, J.G., Mathieu, D., Loudet, C., Buchoux, S., Dufourc, E.J., 2007. Plant sterols in "rafts": a better way to regulate membrane thermal shocks. FASEB J. 21, 1714-1723. https://doi.org/10.1096/fj.06-7809com.
  • Beyene, A., Awoke, A., Triest, L., 2014. Estimation of environmental optima and tolerances of diatoms using multifactor multiplicative modeling. Ecol. Inf. 19, 53-61. https://doi.org/10.1016/j.ecoinf.2013.12.007.
  • Borowitzka, M.A., 2013. High-value products from microalgae - their development and commercialisation. J. Appl. Phycol. 25, 743-756. https://doi.org/10.1007/s10811- 013-9983-9.
  • Bowler, C., Allen, A.E., Badger, J.H., Grimwood, J., Jabbari, K., Kuo, A., Maheswari, U., Martens, C., Maumus, F., Otillar, R.P., Rayko, E., Salamov, A., Vandepoele, K., Beszteri, B., Gruber, A., Heijde, M., Katinka, M., Mock, T., Berges, J.A., Brownlee, C., Cadoret, J., Chiovitti, A., Valentin, K., Choi, C.J., Coesel, S., Martino, A., De, Detter, J.C., Durkin, C., Falciatore, A., Lopez, P.J., Lucas, S., Lindquist, E., Lommer, M., Napoli, C., Obornik, M., Parker, M.S., Petit, J., Porcel, B.M., 2008. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456, 239-244. https://doi.org/10.1038/nature07410.
  • Bozarth, A., Maier, U.G., Zauner, S., 2009. Diatoms in biotechnology: modern tools and applications. Appl. Microbiol. Biotechnol. 82, 195-201. https://doi.org/10.1007/ s00253-008-1804-8.
  • Breteler, W.C.M.K., Schogt, N., Rampen, S., 2005. Effect of diatom nutrient limitation on copepod development: role of essential lipids. Mar. Ecol. Prog. Ser. 291, 125-133. https://doi.org/10.3354/meps291125.
  • Brown, M.R., Dunstan, G.A., Norwood, S.J., Miller, K.A., 1996. Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana. J. Phycol. 32, 64-73. https://doi.org/10.1111/j.0022-3646.1996.00064.x.
  • Burg, J.S., Espenshade, P.J., 2011. Regulation of HMG-CoA reductase in mammals and yeast. Prog. Lipid Res. 50, 403-410. https://doi.org/10.1016/j.plipres.2011.07.002. Regulation.
  • Chan, C.X., Bhattacharya, D., Reyes-prieto, A., 2012. Endosymbiotic and horizontal gene transfer in microbial eukaryotes. Mobile Genet. Elem. 2, 101-105. https://doi.org/ 10.4161/mge.20110.
  • Chang, Y.C., Bien, C.M., Lee, H., Espenshade, P.J., Kwon-chung, K.J., 2007. Sre1p, a regulator of oxygen sensing and sterol homeostasis, is required for virulence in Cryptococcus neoformans. Mol. Microbiol. 64, 614-629. https://doi.org/10.1111/j. 1365-2958.2007.05676.x.
  • Chauton, M., Olsen, Y., Vadstein, O., 2013. Biomass production from the microalga Phaeodactylum tricornutum: nutrient stress and chemical composition in exponential fed-batch. Biomass Bioenergy 58, 87-94. https://doi.org/10.1016/j.biombioe.2013. 10.004.
  • Chen, C., Yeh, K., Aisyah, R., Lee, D., Chang, J., 2011. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour. Technol. 102, 71-81. https://doi.org/10.1016/j.biortech.2010.06.159.
  • Chisti, Y., 2007. Biodiesel from microalgae. Biotechnol. Adv. 25, 294-306. https://doi. org/10.1016/j.biotechadv.2007.02.001.
  • Chun, C.D., Liu, O.W., Madhani, H.D., 2007. A link between virulence and homeostatic responses to hypoxia during infection by the human fungal pathogen cryptococcus neoformans. PLoS Pathog. 3, 0225-0238. https://doi.org/10.1371/journal.ppat. 0030022.
  • Clavero, E., Hernandez-Marine, M., Grimalt, J.O., Garcia-Pichel, F., 2000. Salinity tolerance from Thalassic hypersaline environments. J. Phycol. 1034, 1021-1034. https://doi.org/10.1046/j.1529-8817.2000.99177.x.
  • D'Adamo, S., Schiano, G., Lowe, G., Szaub-newton, J., Beacham, T., Landels, A., Allen, M.J., Spicer, A., Matthijs, M., 2018. Engineering the unicellular alga Phaeodactylum tricornutum for high-value plant triterpenoid production. Plant Biotechnol. J. 17, 75-87. https://doi.org/10.1111/pbi.12948.
  • D'Ippolito, G., Sardo, A., Paris, D., Vella, F.M., Adelfi, M.G., Botte, P., Gallo, C., Fontana, A., 2015. Potential of lipid metabolism in marine diatoms for biofuel production. Biotechnol. Biofuels 8, 28. https://doi.org/10.1186/s13068-015-0212-4.
  • Daboussi, F., Leduc, S., Marechal, A., Dubois, G., Perez-michaut, C., Amato, A., Falciatore, A., Juillerat, A., Beurdeley, M., Voytas, D.F., Cavarec, L., Duchateau, P., 2014. Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nat. Commun. 5, 3831. https://doi.org/10.1038/ncomms4831.
  • Davis, A., Abbriano, R., Smith, S.R., Hildebrand, M., 2017a. Clarification of photorespiratory processes and the role of malic enzyme in diatoms. Protist 168, 134-153. https://doi.org/10.1016/j.protis.2016.10.005.
  • Davis, A., Crum, L.T., Corbeil, L.B., Hildebrand, M., 2017b. Expression of Histophilus somni IbpA DR2 protective antigen in the diatom Thalassiosira pseudonana. Appl. Microbiol. Biotechnol. 101, 5313-5324. https://doi.org/10.1007/s00253-017- 8267-8.
  • De Jesus Raposo, M.F., de Morais, R.M.S.C., de Morais, A.M.M.B., 2013. Health applications of bioactive compounds from marine microalgae. Life Sci. 93, 479-486. https://doi.org/10.1016/j.lfs.2013.08.002.
  • De Smet, E., Mensink, R.P., Plat, J., 2012. Effects of plant sterols and stanols on intestinal cholesterol metabolism: suggested mechanisms from past to present. Mol. Nutr. Food Res. 56, 1058-1072. https://doi.org/10.1002/mnfr.201100722.
  • Desmond, E., Gribaldo, S., 2009. Phylogenomics of sterol synthesis: insights into the origin, evolution, and diversity of a key eukaryotic feature. Genome Biol. Evol. 1, 364-381. https://doi.org/10.1093/gbe/evp036.
  • Doblas, V.G., Amorim-Silva, V., Pose, D., Rosado, A., Esteban, A., Arro, M., Azevedo, H., Bombarely, A., Borsani, O., Valpuesta, V., Ferrer, A., 2013. The SUD1 gene encodes a putative E3 ubiquitin ligase and is a positive regulator of 3-hydroxy-3-methylglutaryl coenzyme a reductase activity in arabidopsis. Plant Cell 25, 728-743. https://doi. org/10.1105/tpc.112.108696.
  • Dufourc, E.J., 2008. Sterols and membrane dynamics. J. Chem. Biol. 1, 63-77. https:// doi.org/10.1007/s12154-008-0010-6.
  • Eizadora, T.Y., Zendejas, F.J., Lane, P.D., Gaucher, S., Simmons, B.A., Lane, T.W., 2009. Triacylglycerol accumulation and profiling in the model diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum (Baccilariophyceae) during starvation. J. Appl. Phycol. 21, 669-681. https://doi.org/10.1007/s10811-008-9400-y.
  • Espenshade, P.J., Hughes, A.L., 2007. Regulation of sterol synthesis in eukaryotes. Annu. Rev. Genet. 41, 401-427. https://doi.org/10.1146/annurev.genet.41.110306. 130315.
  • Espin, J.C., Garcia-Conesa, M.T., Tomas-Barberan, F.A., 2007. Nutraceuticals: facts and fiction. Phytochemistry 68, 2986-3008. https://doi.org/10.1016/j.phytochem.2007. 09.014.
  • Fabris, M., Matthijs, M., Carbonelle, S., Moses, T., Pollier, J., Dasseville, R., Baart, G.J.E., Vyverman, W., Goossens, A., 2014. Tracking the sterol biosynthesis pathway of the diatom Phaeodactylum tricornutum. New Phytol. 204, 521-535. https://doi.org/10. 1111/nph.12917.
  • Fahy, E., Subramaniam, S., Brown, H.A., Glass, C.K., Merrill, A.H., Murphy, R.C., Raetz, C.R.H., Russell, D.W., Seyama, Y., Shaw, W., Shimizu, T., Spener, F., van Meer, G., VanNieuwenhze, M.S., White, S.H., Witztum, J.L., Dennis, E.A., 2005. A comprehensive classification system for lipids. J. Lipid Res. 46, 839-861. https://doi.org/10. 1194/jlr.E400004-JLR200.
  • FDA, 2005. 21 CFR 101.83 - Health Claims: Plant Sterol/stanol Esters and Risk of Coronary Heart Disease (CHD).
  • Fernandes, P., Cabral, J.M.S., 2007. Phytosterols: applications and recovery methods. Bioresour. Technol. 98, 2335-2350. https://doi.org/10.1016/j.biortech.2006.10. 006.
  • Fu, W., Wichuk, K., Brynjolfsson, S., 2015. Developing diatoms for value-added products: challenges and opportunities. N. Biotech. 32, 547-551. https://doi.org/10.1016/j. nbt.2015.03.016.
  • Fu, W., Chaiboonchoe, A., Khraiwesh, B., Sultana, M., Jaiswal, A., Jijakli, K., Nelson, D.R., Al-Hrout, A., Baig, B., Amin, A., Salehi-Ashtiani, K., 2017. Intracellular spectral recompositioning of light enhances algal photosynthetic efficiency. Sci. Adv. 3, e1603096. https://doi.org/10.1126/sciadv.1603096.
  • Gabay, O., Sanchez, C., Salvat, C., Chevy, F., Breton, M., Nourissat, G., Wolf, C., Jacques, C., Berenbaum, F., 2010. Stigmasterol: a phytosterol with potential anti-osteoarthritic properties. Osteoarthritis Cartilage 18, 106-116. https://doi.org/10.1016/j.joca. 2009.08.019.
  • Gallo, C., d'Ippolito, G., Nuzzo, G., Sardo, A., Fontana, A., 2017. Autoinhibitory sterol sulfates mediate programmed cell death in a bloom-forming marine diatom. Nat. Commun. 8, 1292. https://doi.org/10.1038/s41467-017-01300-1.
  • Gill, S., Stevenson, J., Kristiana, I., Brown, A.J., 2011. Cholesterol-dependent degradation of squalene monooxygenase, a control point in cholesterol synthesis beyond HMGCoA reductase. Cell Metabol. 13, 260-273. https://doi.org/10.1016/j.cmet.2011.01. 015.
  • Giner, J.L., Wikfors, G.H., 2011. "Dinoflagellate Sterols" in marine diatoms. Phytochemistry 72, 1896-1901. https://doi.org/10.1016/j.phytochem.2011.05.002.
  • Gladu, P.K., Patterson, G.W., Wikfors, G.H., Chitwood, D.J., Lusby, W.R., 1991. Sterols of some diatoms. Phytochemistry 30, 2301-2303. https://doi.org/10.1016/0031- 9422(91)83634-W.
  • Gong, Y., Hu, H., Gao, Y., Xu, X., Gao, H., 2011. Microalgae as platforms for production of recombinant proteins and valuable compounds: progress and prospects. J. Ind. Microbiol. Biotechnol. 38, 1879-1890. https://doi.org/10.1007/s10295-011-1032-6.
  • Gong, Y., Zhang, J., Guo, X., Wan, X., Liang, Z., Jiong, C., Jiang, M., 2013. Identification and characterization of PtDGAT2B , an acyltransferase of the DGAT2 acyl-Coenzyme A: diacylglycerol acyltransferase family in the diatom Phaeodactylum tricornutum. FEBS Lett. 587, 481-487. https://doi.org/10.1016/j.febslet.2013.01.015.
  • Griffiths, M.J., Harrison, S.T.L., 2009. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol. 21, 493-507. https:// doi.org/10.1007/s10811-008-9392-7.
  • Hallikainen, M., Lyyra-laitinen, T., Laitinen, T., Moilanen, L., Miettinen, T.A., Gylling, H., 2008. Effects of plant stanol esters on serum cholesterol concentrations, relative markers of cholesterol metabolism and endothelial function in type 1 diabetes. Artherosclerosis 199, 432-439. https://doi.org/10.1016/j.atherosclerosis.2007.10. 033.
  • Hamilton, M.L., Warwick, J., Terry, A., Allen, M.J., Napier, A., Sayanova, O., 2015. Towards the industrial production of omega- 3 long chain polyunsaturated fatty acids from a genetically modified diatom phaeodactylum tricornutum. PLoS One 10. https://doi.org/10.1371/journal.pone.0144054.
  • Hannich, J.T., Umebayashi, K., Riezman, H., 2011. Distribution and functions of sterols and sphingolipids. Cold Spring Harb. Perspect. Biol. 3, a004762. https://doi.org/10. 1101/cshperspect.a004762.
  • Harding, T., Roger, A.J., Simpson, A.G.B., 2017. Adaptations to high salt in a halophilic protist: differential expression and gene acquisitions through duplications and gene transfers. Front. Microbiol. 8, 944. https://doi.org/10.3389/fmicb.2017.00944.
  • Hempel, F., Maier, U.G., 2012. An engineered diatom acting like a plasma cell secreting human IgG antibodies with high efficiency. Microb. Cell Factories 11, 126. https:// doi.org/10.1186/1475-2859-11-126.
  • Henley, W.J., Litaker, R.W., Novoveska, L., Duke, C.S., Quemada, H.D., Sayre, R.T., 2013. Initial risk assessment of genetically modified (GM) microalgae for commodity-scale biofuel cultivation. Algal Res 2, 66-77. https://doi.org/10.1016/j.algal.2012.11.001.
  • Hildebrand, M., Davis, A.K., Smith, S.R., Traller, J.C., Abbriano, R., 2012. The place of diatoms in the biofuels industry. Biofuels 3, 221-240. https://doi.org/10.4155/bfs. 11.157.
  • Hopes, A., Nekrasov, V., Kamoun, S., Mock, T., 2016. Editing of the urease gene by CRISPR-Cas in the diatom Thalassiosira pseudonana. Plant Methods 12, 49. https:// doi.org/10.1186/s13007-016-0148-0.
  • Howe, V., Sharpe, L.J., Alexopoulos, S.J., Kunze, S.V., Kiat, N., Li, D., Brown, A.J., 2016. Cholesterol homeostasis: how do cells sense sterol excess? Chem. Phys. Lipids 199, 170-178. https://doi.org/10.1016/j.chemphyslip.2016.02.011.
  • Huang, Q., Jiang, F., Wang, L., Yang, C., 2017. Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering 3, 318-329. https://doi.org/10. 1016/J.ENG.2017.03.020.
  • Huang, W., Daboussi, F., 2017. Genetic and metabolic engineering in diatoms. Philos. Trans. R. Soc. B 372, 20160411. https://doi.org/10.1098/rstb.2016.0411.
  • Hughes, A.L., Todd, B.L., Espenshade, P.J., 2005. SREBP pathway responds to sterols and functions as an oxygen sensor in fission yeast. Cell 120, 831-842. https://doi.org/10. 1016/j.cell.2005.01.012.
  • Huntley, M.E., Johnson, Z.I., Brown, S.L., Sills, D.L., Gerber, L., Archibald, I., Machesky, S.C., Granados, J., Beal, C., Greene, C.H., 2015. Demonstrated large-scale production of marine microalgae for fuels and feed. Algal Res 10, 249-265. https://doi.org/10. 1016/j.algal.2015.04.016.
  • Izar, M.C., Tegani, D.M., Kasmas, S.H., Fonseca, F.A., 2011. Phytosterols and phytosterolemia: gene-diet interactions. Genes Nutr 6, 17-26. https://doi.org/10.1007/ s12263-010-0182-x.
  • Jung, H.A., Islam, M.N., Lee, C.M., Oh, S.H., Lee, S., Jung, J.H., Choi, J.S., 2013. Kinetics and molecular docking studies of an anti-diabetic complication inhibitor fucosterol from edible brown algae Eisenia bicyclis and Ecklonia stolonifera. Chem. Biol. Interact. 206, 55-62. https://doi.org/10.1016/j.cbi.2013.08.013.
  • Katan, M.B., Grundy, S.M., Jones, P., Law, M., Miettinen, T., Paoletti, R., 2003. Efficacy and safety of plant stanols and sterols in the management of blood cholesterol levels. Mayo Clin. Proc. 78, 965-978. https://doi.org/10.4065/78.8.965.
  • Keeling, P.J., Burki, F., Wilcox, H.M., Allam, B., Allen, E.E., Amaral-Zettler, L.A., Armbrust, E.V., Archibald, J.M., Bharti, A.K., Bell, C.J., Beszteri, B., Bidle, K.D., Cameron, C.T., Campbell, L., Caron, D.A., Cattolico, R.A., Collier, J.L., Coyne, K., Davy, S.K., Deschamps, P., Dyhrman, S.T., Edvardsen, B., Gates, R.D., Gobler, C.J., Greenwood, S.J., Guida, S.M., Jacobi, J.L., Jakobsen, K.S., James, E.R., Jenkins, B., John, U., Johnson, M.D., Juhl, A.R., Kamp, A., Katz, L.A., Kiene, R., Kudryavtsev, A., Leander, B.S., Lin, S., Lovejoy, C., Lynn, D., Marchetti, A., McManus, G., Nedelcu, A.M., Menden-Deuer, S., Miceli, C., Mock, T., Montresor, M., Moran, M.A., Murray, S., Nadathur, G., Nagai, S., Ngam, P.B., Palenik, B., Pawlowski, J., Petroni, G., Piganeau, G., Posewitz, M.C., Rengefors, K., Romano, G., Rumpho, M.E., Rynearson, T., Schilling, K.B., Schroeder, D.C., Simpson, A.G.B., Slamovits, C.H., Smith, D.R., Smith, G.J., Smith, S.R., Sosik, H.M., Stief, P., Theriot, E., Twary, S.N., Umale, P.E., Vaulot, D., Wawrik, B., Wheeler, G.L., Wilson, W.H., Xu, Y., Zingone, A., Worden, A.Z., 2014. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 12, e1001889. https://doi.org/10. 1371/journal.pbio.1001889.
  • Kim, J., Yoo, G., Lee, H., Lim, J., Kim, K., Kim, C.W., Park, M.S., Yang, J.W., 2013. Methods of downstream processing for the production of biodiesel from microalgae. Biotechnol. Adv. 31, 862-876. https://doi.org/10.1016/j.biotechadv.2013.04.006.
  • Kritchevsky, D., Chen, S.C., 2005. Phytosterols - health benefits and potential concerns: a review. Nutr. Res. 25, 413-428. https://doi.org/10.1016/j.nutres.2005.02.003.
  • Lebeau, T., Robert, J., 2003a. Diatom cultivation and biotechnologically relevant products. Part I: cultivation at various scales. Appl. Microbiol. Biotechnol. 60, 612-623. https://doi.org/10.1007/s00253-002-1176-4.
  • Lebeau, T., Robert, J.M., 2003b. Diatom cultivation and biotechnologically relevant products. Part II: current and putative products. Appl. Microbiol. Biotechnol. 60, 624-632. https://doi.org/10.1007/s00253-002-1176-4.
  • Lee, Y.S., Shin, K.H., Kim, B.-K., Lee, S., 2004. Anti-diabetic activities of fucosterol from Pelvetia siliquosa. Arch Pharm. Res. (Seoul) 27, 1120-1122. https://doi.org/10. 1007/BF02975115.
  • Leivar, P., Antolin-Llovera, M., Ferrero, S., Closa, M., Arro, M., Ferrer, A., Boronat, A., Campos, N., 2011. Multilevel control of arabidopsis 3-hydroxy-3-methylglutaryl coenzyme a reductase by protein phosphatase 2A. Plant Cell 23, 1494-1511. https:// doi.org/10.1105/tpc.110.074278.
  • Levitan, O., Dinamarca, J., Zelzion, E., Gorbunov, M.Y., Falkowski, P.G., 2015. An RNA interference knock-down of nitrate reductase enhances lipid biosynthesis in the diatom Phaeodactylum tricornutum. Plant J. 84, 963-973. https://doi.org/10.1111/ tpj.13052.
  • Liao, P., Wang, H., Wang, M., Hsiao, A., Bach, T.J., Chye, M., 2014. Transgenic tobacco overexpressing Brassica juncea HMG-CoA synthase 1 shows increased plant growth, pod size and seed yield. PLoS One 9, e98264. https://doi.org/10.1371/journal.pone. 0098264.
  • Lichtenthaler, H.K., 2000. Non-mevalonate isoprenoid biosynthesis: enzymes, genes and inhibitors. Biochem. Soc. Trans. 28, 785-789. https://doi.org/10.1042/BST0280785.
  • Lin, Y., Knol, D., Trautwein, E.A., 2016. Phytosterol oxidation products (POP) in foods with added phytosterols and estimation of their daily intake: a literature review. Eur. J. Lipid Sci. Technol. 118, 1423-1438. https://doi.org/10.1002/ejlt.201500368.
  • Lohr, M., Schwender, J., Polle, J.E., 2012. Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Sci. 185, 9-22. https://doi.org/10.1016/j.plantsci. 2011.07.018.
  • Lopez-Elias, J.A., Voltolina, D., Enriquez-Ocana, F., Gallegos-Simental, G., 2005. Indoor and outdoor mass production of the diatom Chaetoceros muelleri in a mexican commercial hatchery. Aquacult. Eng. 33, 181-191. https://doi.org/10.1016/j. aquaeng.2005.01.001.
  • Lu, Y., Zhou, W., Wei, L., Li, J., Jia, J., Li, F., Smith, S., Xu, J., 2014. Regulation of the cholesterol biosynthetic pathway and its integration with fatty acid biosynthesis in the oleaginous microalga Nannochloropsis oceanica. Biotechnol. Biofuels 7, 81. https://doi.org/10.1186/1754-6834-7-81.
  • Luo, X., Su, P., Zhang, W., 2015. Advances in microalgae-derived phytosterols for functional food and pharmaceutical applications. Mar. Drugs 13, 4231-4254. https://doi. org/10.3390/md13074231.
  • Ma, Y.H., Wang, X., Niu, Y.F., Yang, Z.K., Zhang, M.H., Wang, Z.M., Yang, W.D., Liu, J.S., Li, H.Y., 2014. Antisense knockdown of pyruvate dehydrogenase kinase promotes the neutral lipid accumulation in the diatom Phaeodactylum tricornutum. Microb. Cell Factories 13, 100. https://doi.org/10.1186/s12934-014-0100-9.
  • Malik, A., Lenzen, M., Ralph, P.J., Tamburic, B., 2015. Hybrid life-cycle assessment of algal biofuel production. Bioresour. Technol. 184, 436-443. https://doi.org/10. 1016/j.biortech.2014.10.132.
  • Mann, D.G., Vanormelingen, P., 2013. An inordinate fondness? The number, distributions, and origins of diatom species. J. J. Eukaryot. Microbiol. 60, 414-420. https:// doi.org/10.1111/jeu.12047.
  • Masse, G., Belt, S.T., Rowland, S.J., Rohmer, M., 2004. Isoprenoid biosynthesis in the diatoms Rhizosolenia setigera (brightwell) and Haslea ostrearia (simonsen). Proc. Natl. Acad. Sci. U. S. A 101, 4413-4418. https://doi.org/10.1073/pnas.0400902101.
  • Matsumoto, M., Nojima, D., Nonoyama, T., Ikeda, K., Maeda, Y., Yoshino, T., Tanaka, T., 2017. Outdoor cultivation of marine diatoms for year-round production of biofuels. Mar. Drugs 15, 94. https://doi.org/10.3390/md15040094.
  • Melis, A., 2009. Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci. 177, 272-280. https://doi. org/10.1016/j.plantsci.2009.06.005.
  • Miras-Moreno, B., Sabater-Jara, A.B., Pedreno, M.A., Almagro, L., 2016. Bioactivity of phytosterols and their production in plant in vitro cultures. J. Agric. Food Chem. 64, 7049-7058. https://doi.org/10.1021/acs.jafc.6b02345.
  • Mitchell, J.G., Seuront, L., Doubell, M.J., Losic, D., Voelcker, N.H., Seymour, J., Lal, R., 2013. The role of diatom nanostructures in biasing diffusion to improve uptake in a patchy nutrient environment. PLoS One 8, e59548. https://doi.org/10.1371/journal. pone.0059548.
  • Moreau, R.A., Whitaker, B.D., Hicks, K.B., 2002. Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Prog. Lipid Res. 41, 457-500. https://doi.org/10.1016/S0163-7827(02) 00006-1.
  • Moss, G.P., 1989. The nomenclature of steroids. Recommendations 1989. Eur. J. Biochem. 186, 429-458. https://doi.org/10.1111/j.1432-1033.1989.tb15228.x.
  • Moustafa, A., Beszteri, B., Maier, U.G., Bowler, C., Valentin, K., Bhattacharya, D., 2009. Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324, 1724-1727. https://doi.org/10.1126/science.1172983.
  • Niu, Y.F., Wang, X., Hu, D.X., Balamurugan, S., Li, D.W., Yang, W.D., Liu, J.S., Li, H.Y., 2016. Molecular characterization of a glycerol-3-phosphate acyltransferase reveals key features essential for triacylglycerol production in Phaeodactylum tricornutum. Biotechnol. Biofuels 9, 60. https://doi.org/10.1186/s13068-016-0478-1.
  • Noakes, M., Clifton, P., Ntanios, F., Shrapnel, W., Record, I., Mcinerney, J., 2002. An increase in dietary carotenoids when consuming plant sterols or stanols is effective in maintaining plasma carotenoid concentrations. Am. J. Clin. Nutr. 75, 79-86. https:// doi.org/10.1093/ajcn/75.1.79.
  • Nymark, M., Sharma, A.K., Sparstad, T., Bones, A.M., Winge, P., 2016. A CRISPR/Cas9 system adapted for gene editing in marine algae. Sci. Rep. 6, 24951. https://doi.org/ 10.1038/srep24951.
  • Parraga-Martinez, I., Lopez-Torres-Hidalgo, J.D., del Campo-del Campo, J.M., Galdon- Blesa, M.P., Precioso-Yanez, J.C., Rabanales-Sotos, J., Garcia-Reyes-Ramos, M., Andres-Pretel, F., Navarro-Bravo, B., Lloret-Callejo, A., 2015. Long-term effects of plant stanols on the lipid profile of patients with hypercholesterolemia. A randomized clinical trial. Rev. Espanola Cardiol. 68, 665-671. https://doi.org/10.1016/j.rec. 2014.07.035.
  • Piepho, M., Martin-Creuzburg, D., Wacker, A., 2012. Phytoplankton sterol contents vary with temperature, phosphorus and silicate supply: a study on three freshwater species. Eur. J. Phycol. 47, 138-145. https://doi.org/10.1080/09670262.2012.665484.
  • Piepho, M., Martin-Creuzburg, D., Wacker, A., 2010. Simultaneous effects of light intensity and phosphorus supply on the sterol content of phytoplankton. PLoS One 5, e15828. https://doi.org/10.1371/journal.pone.0015828.
  • Piironen, V., Lindsay, D.G., Miettinen, T.A., Toivo, J., Lampi, A.M., 2000. Plant sterols: biosynthesis, biological function and their importance to human nutrition. J. Sci. Food Agric. 80, 939-966. https://doi.org/10.1002/(SICI)1097-0010(20000515) 80:7<939::AID-JSFA644>3.0.CO;2-C.
  • Piironen, V., Toivo, J., Puupponen-Pimia, R., Lampi, A.M., 2003. Plant sterols in vegetables, fruits and berries. J. Sci. Food Agric. 83, 330-337. https://doi.org/10.1002/ jsfa.1316.
  • Pollak, O.J., 1953. Reduction of blood cholesterol in man. Circulation 5, 702-706. https://doi.org/10.1161/01.CIR.7.5.702.
  • Pollier, J., Moses, T., Gonzalez-Guzman, M., De Geyter, N., Lippens, S., Bossche, R.V., Marhavy, P., Kremer, A., Morreel, K., Guerin, C.J., Tava, A., Oleszek, W., Thevelein, J., Campos, N., Goormachtig, S., Goossens, A., 2013. The protein quality control system manages plant defence compound synthesis. Nature 504, 148-152. https:// doi.org/10.1038/nature12685.
  • Pollier, J., Vancaester, E., Kuzhiumparambil, U., Vickers, C., Vandepoele, K., Goossens, A., Fabris, M., 2018. A widespread alternative squalene epoxidase participates in eukaryote steroid biosynthesis. Nat. Microbiol. 4, 226. https://doi.org/10.1038/ s41564-018-0305-5.
  • Ponomarenko, L.P., Stonik, I.V., Aizdaicher, N.A., Orlova, T.Y., Popovskaya, G.I., Pomazkina, G.V., Stonik, V.A., 2004. Sterols of marine microalgae Pyramimonas cf. cordata (Prasinophyta), Attheya ussurensis sp. nov. (Bacillariophyta) and a spring diatom bloom from Lake Baikal. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 138, 65-70. https://doi.org/10.1016/j.cbpc.2004.02.007.
  • Rampen, S.W., Abbas, B.A., Schouten, S., Damste, J.S.S., 2010. A comprehensive study of sterols in marine diatoms (Bacillariophyta): implications for their use as tracers for diatom productivity. Limnol. Oceanogr. 55, 91-105. https://doi.org/10.4319/lo. 2010.55.1.0091.
  • Ras, R.T., Geleijnse, J.M., Trautwein, E.A., 2014. LDL-cholesterol-lowering effect of plant sterols and stanols across different dose ranges : a meta-analysis of randomised controlled studies. Br. J. Nutr. 112, 214-219. https://doi.org/10.1017/ S0007114514000750.
  • Rastogi, A., Maheswari, U., Dorrell, R.G., Rocha, F., Vieira, J., Kustka, A., Mccarthy, J., Allen, A.E., Kersey, P., Bowler, C., Tirichine, L., 2018. Integrative analysis of large scale transcriptome data draws a comprehensive landscape of Phaeodactylum tricornutum genome and evolutionary origin of diatoms. Sci. Rep. 8, 4834. https://doi. org/10.1038/s41598-018-23106-x.
  • Ro, D.K., Paradise, E.M., Ouellet, M., Fisher, K.J., Newman, K.L., Ndungu, J.M., Ho, K.A., Eachus, R.A., Ham, T.S., Kirby, J., Chang, M.C.Y., Withers, S.T., Shiba, Y., Sarpong, R., Keasling, J.D., 2006. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940. https://doi.org/10.1038/nature04640.
  • Rodriguez-Concepcion, M., 2006. Early steps in isoprenoid biosynthesis: multilevel regulation of the supply of common precursors in plant cells. Phytochemistry Rev. 5, 1-15. https://doi.org/10.1007/s11101-005-3130-4.
  • Rosenfeld, J.M., Osborne, T.F., 1998. HLH106, a Drosophila sterol regulatory elementbinding protein in a natural cholesterol auxotroph. J. Biol. Chem. 273, 16112-16121. https://doi.org/10.1074/jbc.273.26.16112.June 26,199 8.
  • Round, F.E., Crawford, R.M., Mann, D.G., 1990. The Diatoms: Biology and Morphology of the Genera. Cambridge University Press, England.
  • Russell, N.J., 1989. Adaptive modifications in membranes of halotolerant and halophilic microorganisms. J. Bioenerg. Biomembr. 21, 93-113. https://doi.org/10.1007/ BF00762214.
  • Saenz, J.P., Grosser, D., Bradley, A.S., Lagny, T.J., Lavrynenko, O., Broda, M., Simons, K., 2015. Hopanoids as functional analogues of cholesterol in bacterial membranes. Proc. Natl. Acad. Sci. Unit. States Am. 112, 11971-11976. https://doi.org/10.1073/pnas. 1515607112.
  • Sasso, S., Pohnert, G., Lohr, M., Mittag, M., Hertweck, C., 2012. Microalgae in the postgenomic era: a blooming reservoir for new natural products. FEMS Microbiol. Rev. 36, 761-785. https://doi.org/10.1111/j.1574-6976.2011.00304.x.
  • Sato, R., Maeda, Y., Yoshino, T., Tanaka, T., Matsumoto, M., 2014. Seasonal variation of biomass and oil production of the oleaginous diatom Fistulifera sp . in outdoor vertical bubble column and raceway-type bioreactors. J. Biosci. Bioeng. 117, 720-724. https://doi.org/10.1016/j.jbiosc.2013.11.017.
  • Satoh, A., Ichii, K., Matsumoto, M., Kubota, C., Nemoto, M., Tanaka, M., Yoshino, T., Matsunaga, T., Tanaka, T., 2013. A process design and productivity evaluation for oil production by indoor mass cultivation of a marine diatom. Fistulifera sp . JPCC DA0580. Bioresour. Technol. 137, 132-138. https://doi.org/10.1016/j.biortech. 2013.03.087.
  • Sauer, S., Plauth, A., 2017. Health-beneficial nutraceuticals - myth or reality ? Appl. Microbiol. Biotechnol. 101, 951-961. https://doi.org/10.1007/s00253-016-8068-5.
  • Seegmiller, A.C., Dobrosotskaya, I., Goldstein, J.L., Ho, Y.K., Brown, M.S., Rawson, R.B., 2002. The SREBP pathway in Drosophila: regulation by palmitate, not sterols. Dev. Cell 2, 229-238. https://doi.org/10.1016/S1534-5807(01)00119-8.
  • Shahzad, N., Khan, W., Shadab, M.D., Ali, A., Saluja, S.S., Sharma, S., Al-Allaf, F.A., Abduljaleel, Z., Ibrahim, I.A.A., Abdel-Wahab, A.F., Afify, M.A., 2017. Phytosterols as a natural anticancer agent: current status and future perspective. Biomed. Pharmacother. 88, 786-794. https://doi.org/10.1016/j.biopha.2017.01.068.
  • Shen, C., Dupont, C.L., Hopkinson, B.M., 2018. The diversity of CO2-concentrating mechanisms in marine diatoms as inferred from their genetic content. J. Exp. Bot. 68, 3937-3948. https://doi.org/10.1093/jxb/erx163.
  • Shin, G.H., Veen, M., Stahl, U., Lang, C., 2012. Overexpression of genes of the fatty acid biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae. Yeast 29, 371-383. https://doi.org/10.1002/yea.
  • Singh, R., De, S., Belkheir, A., 2013. Avena sativa (Oat), a potential neutraceutical and therapeutic tgent: an overview. Crit. Rev. Food Sci. Nutr. 53, 126-144. https://doi. org/10.1080/10408398.2010.526725.
  • Slattery, S.S., Diamond, A., Wang, H., Therrien, J.A., Lant, J.T., Jazey, T., Lee, K., Klassen, Z., Desgagne-Penix, I., Edgell, D.R., 2018. An expanded plasmid-based genetic toolbox enables Cas9 genome editing and stable maintenance of synthetic pathways in phaeodactylum tricornutum. ACS Synth. Biol. 7, 328-338. https://doi.org/10. 1021/acssynbio.7b00191.
  • Souza, C.M., Schwabe, T.M., Pichler, H., Ploier, B., Leitner, E., Li, X., Wenk, M.R., Riezman, I., Riezman, H., 2011. A stable yeast strain efficiently producing cholesterol instead of ergosterol is functional for tryptophan uptake, but not weak organic acid resistance. Metab. Eng. 13, 555-569. https://doi.org/10.1016/j.ymben.2011.06.006.
  • Stonik, V., Stonik, I., 2015. Low-Molecular-weight metabolites from diatoms: structures, biological roles and biosynthesis. Mar. Drugs 13, 3672-3709. https://doi.org/10. 3390/md13063672.
  • Szyjka, S.J., Mandal, S., Schoepp, N.G., Tyler, B.M., Yohn, C.B., Poon, Y.S., Villareal, S., Burkart, M.D., Shurin, J.B., Mayfield, S.P., 2017. Evaluation of phenotype stability and ecological risk of a genetically engineered alga in open pond production. Algal Res 24, 378-386. https://doi.org/10.1016/j.algal.2017.04.006.
  • Tan, X.B., Lam, M.K., Uemura, Y., Lim, J.W., Wong, C.Y., Lee, K.T., 2018. Cultivation of microalgae for biodiesel production: a review on upstream and downstream processing. Chin. J. Chem. Eng. 26, 17-30. https://doi.org/10.1016/j.cjche.2017.08. 010.
  • Tanaka, T., Yabuuchi, T., Maeda, Y., Nojima, D., Matsumoto, M., Yoshino, T., 2017. Production of eicosapentaenoic acid by high cell density cultivation of the marine oleaginous diatom Fistulifera solaris. Bioresour. Technol. 245, 567-572. https://doi. org/10.1016/j.biortech.2017.09.005.
  • Tenenbaum, D.J., 2008. Food vs. fuel: diversion of crops could cause more hunger. Environ. Health Perspect. 116, 254-257. https://doi.org/10.1289/ehp.116-a254.
  • Thompson, D.L., Jellum, M.D., Young, C.T., 1973. Effect of controlled temperature environments on oil content and on fatty acid composition of corn oil. J. Am. Oil Chem. Soc. 50, 540-542. https://doi-org.ezproxy.lib.uts.edu.au/10.1007/BF02640529.
  • Todd, B.L., Stewart, E.V., Burg, J.S., Hughes, A.L., Espenshade, P.J., 2006. Sterol regulatory element binding protein is a principal regulator of anaerobic gene expression in fission yeast. Mol. Cell Biol. 26, 2817-2831. https://doi.org/10.1128/MCB.26.7. 2817.
  • Tozzi, S., Schofield, O., Falkowski, P., 2004. Historical climate change and ocean turbulence as selective agents for two key phytoplankton functional groups. Mar. Ecol. Prog. Ser. 274, 123-132. https://doi.org/10.3354/meps274123.
  • Traller, J.C., Hildebrand, M., 2013. High throughput imaging to the diatom Cyclotella cryptica demonstrates substantial cell-to-cell variability in the rate and extent of triacylglycerol accumulation. Algal Res 2, 244-252. https://doi.org/10.1016/j.algal. 2013.03.003.
  • Trentacoste, E.M., Shrestha, R.P., Smith, S.R., Gle, C., Hartmann, A.C., Hildebrand, M., Gerwick, W.H., Gle, C., Hartmann, A.C., Hildebrand, M., Gerwick, W.H., 2013. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc. Natl. Acad. Sci. U.S.A. 110, 19748-19753. https://doi.org/10.1073/pnas.1309299110.
  • Uddin, M.S., Sarker, M.Z.I., Ferdosh, S., Akanda, M.J.H., Easmin, M.S., Bt Shamsudin, S.H., Yunus, K.B., 2014. Phytosterols and their extraction from various plant matrices using supercritical carbon dioxide: a review. J. Sci. Food Agric. 95, 1385-1394. https://doi.org/10.1002/jsfa.6833.
  • Vavitsas, K., Fabris, M., Vickers, C.E., 2018. Terpenoid metabolic engineering in photosynthetic microorganisms. Genes 9, 520. https://doi.org/10.3390/genes9110520.
  • Veron, B., Billard, C., Dauguet, J.C., Hartmann, M.A., 1996. Sterol composition of phaeodactylum tricornutum as influenced by growth temperature and light spectral quality. Lipids 31, 989-994. https://doi.org/10.1007/BF02522694.
  • Veron, B., Dauguet, J., Billard, C., 1998. Sterolic biomarkers in marine phytoplankton. II. Free and conjucated sterols of seven species used in mariculture. J. Phycol. 34, 273-279. https://doi.org/10.1046/j.1529-8817.1998.340273.x.
  • Vik, A., Rine, J., 2001. Upc2p and Ecm22p, dual regulators of sterol biosynthesis in Saccharomyces cerevisiae. Mol. Cell Biol. 21, 6395-6405. https://doi.org/10.1128/ MCB.21.19.6395.
  • Villanova, V., Fortunato, A.E., Singh, D., Bo, D.D., Conte, M., Obata, T., Jouhet, J., Fernie, A.R., Marechal, E., Falciatore, A., Pagliardini, J., Monnier, A., Le, Poolman, M., Curien, G., Petroutsos, D., Finazzi, G., Finazzi, G., 2017. Investigating mixotrophic metabolism in the model diatom Phaeodactylum tricornutum. Philos. Trans. R. Soc. B 372, 20160404. https://doi.org/10.1098/rstb.2016.0404.
  • Volkman, J.K., 2016. Sterols in microalgae. In: The Physiology of Microalgae. Springer International Publishing, Switzerland, pp. 681. https://doi.org/10.1007/978-3-319- 24945-2_19.
  • Volkman, J.K., 2003. Sterols in microorganisms. Appl. Microbiol. Biotechnol. 60, 495-506. https://doi.org/10.1007/s00253-002-1172-8.
  • Vriet, C., Russinova, E., Reuzeau, C., 2013. From squalene to brassinolide: the steroid metabolic and signaling pathways across the plant kingdom. Mol. Plant 6, 1738-1757. https://doi.org/10.1093/mp/sst096.
  • Wagner, H., Jakob, T., Wilhelm, C., 2006. Balancing the energy flow from captured light to biomass under fluctuating light conditions. New Phytol. 169, 95-108. https://doi. org/10.1111/j.1469-8137.2005.01550.x.
  • Wang, H., Nagegowda, D.A., Rawat, R., Bouvier-Nave, P., Guo, D., Bach, T.J., Chye, M.L., 2012. Overexpression of Brassica juncea wild-type and mutant HMG-CoA synthase 1 in Arabidopsis up-regulates genes in sterol biosynthesis and enhances sterol production and stress tolerance. Plant Biotechnol. J. 10, 31-42. https://doi.org/10. 1111/j.1467-7652.2011.00631.x.
  • Wang, J., Huang, M., Yang, J., Ma, X., Zheng, S., Deng, S., Huang, Y., Yang, X., 2017. Anti-diabetic activity of stigmasterol from soybean oil by targeting the GLUT4 glucose transporter. Food Nutr. Res. 61, 1364117. https://doi.org/10.1080/16546628. 2017.1364117.
  • Wang, J.K., Seibert, M., 2017. Prospects for commercial production of diatoms. Biotechnol. Biofuels 10, 16. https://doi.org/10.1186/s13068-017-0699-y.
  • Wei, J.H., Yin, X., Welander, P.V., 2016. Sterol synthesis in diverse bacteria. Front. Microbiol. 7, 990. https://doi.org/10.3389/fmicb.2016.00990.
  • Weyer, K.M., Bush, D.R., Darzins, A., Willson, B.D., 2010. Theoretical maximum algal oil production. Bioenergy Res 3, 204-213. https://doi.org/10.1007/s12155-009-9046-x.
  • Weyman, P.D., Beeri, K., Lefebvre, S.C., Rivera, J., Mccarthy, J.K., Heuberger, A.L., Peers, G., Allen, A.E., Dupont, C.L., 2015. Inactivation of Phaeodactylum tricornutum urease gene using transcription activator-like effector nuclease-based targeted mutagenesis. Plant Biotechnol. J. 13, 460-470. https://doi.org/10.1111/pbi.12254.
  • Whiffin, F., Santomauro, F., Chuck, C.J., 2016. Toward a microbial palm oil substitute: oleaginous yeasts cultured on lignocellulose. Biofuels, Bioprod. biorefining 10, 316-334. https://doi.org/10.1002/bbb.
  • Wolf, R.B., Cavins, J.F., Kleiman, R., Black, L.T., 1982. Effect of temperature on soybean seed constituents: oil, protein, moisture, fatty acids, amino acids and sugars. J. Am. Oil Chem. Soc. 59, 230-232. https://doi.org/10.1007/BF02582182.
  • Wollam, J., Antebi, A., 2011. Sterol regulation of metabolism, homeostasis and development. Annu. Rev. Biochem. 80, 885-916. https://doi.org/10.1146/annurevbiochem-081308-165917.Sterol.
  • Xue, J., Niu, Y., Huang, T., Yang, W., Liu, J., Li, H., 2015. Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation. Metab. Eng. 27, 1-9. https://doi.org/10.1016/j.ymben.2014.10.002.
  • Yang, Z.K., Niu, Y.F., Ma, Y.H., Xue, J., Zhang, M.H., Yang, W.D., Liu, J.S., Lu, S.H., Guan, Y., Li, H.Y., 2013. Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation. Biotechnol. Biofuels 6. https://doi.org/10. 1186/1754-6834-6-67.
  • Yao, Y., Lu, Y., Peng, K.T., Huang, T., Niu, Y.F., Xie, W.H., Yang, W.D., Liu, J.S., Li, H.Y., 2014. Glycerol and neutral lipid production in the oleaginous marine diatom Phaeodactylum tricornutum promoted by overexpression of glycerol-3-phosphate dehydrogenase. Biotechnol. Biofuels 7 (110). https://doi.org/10.1186/1754-6834-7- 110.
  • Zampelas, A., 2014. From the Maastricht meeting to the European Atherosclerosis Society Consensus on phytosterols/phytostanols: what is new of an old story? Atherosclerosis 233, 357-358. https://doi.org/10.1016/j.atherosclerosis.2014.01.007.
  • Zhu, B.H., Shi, H.P., Yang, G.P., Lv, N.N., Yang, M., Pan, K.H., 2016. Silencing UDPglucose pyrophosphorylase gene in Phaeodactylum tricornutum affects carbon allocation. N. Biotech. 33, 237-244. https://doi.org/10.1016/j.nbt.2015.06.003.