Expert assessments in decision making: risks and safety
Creators
-
Dmytro Domin1
-
Nataliia Martynenko2
-
Airam Curtidor3
-
Masuma Mammadova4
-
Graciela Velasco Herrera3
-
Tetyana Baydyk3
-
Ernst Kussul3
-
Zarifa Jabrayilova4
-
Huseyn Gasimov5
-
Ayten Ahmadova4
-
Volodymyr Polishchuk6
-
Serhii Yanishevskyi6
-
Oksana Bilonoh6
-
Liudmyla Nahrebelna7
-
Vyacheslav Trushevsky8
-
Alina Korchevskaya6
-
Oksana Semenchenko6
-
Inna Vyhovska6
- 1. Scientific Route OÜ
- 2. National Scientific Center «Hon. Prof. M. S. Bokarius Forensic Science Institute»
- 3. National Autonomous University of Mexico (UNAM)
- 4. Institute of Information Technology
-
5.
Nakhchivan State University
- 6. National Transport University
- 7. M. P. Shulgin State Road Research Institute State Enterprise
- 8. National University "Zaporizhzhia Polytechnic"
Description
The monograph “Expert assessments in decision making: risks and safety” presents studies that address the problems of expert assessments and the formation of decisions based on expert opinions in some areas of human activity. The results of decisions based on such assessments have a direct impact on safety and the risks that may follow. The problems are considered in the following aspects.
An innovative approach to the formation of a list of types of forensic examinations and expert specialties.
It has been established that the existing classification of forensic examinations by branches of specific examination used in their conduct is outdated and does not meet modern requirements. This creates difficulties not only for forensic experts and persons wishing to become them, but also for the court, participants in the trial and all citizens interested in obtaining a forensic expert's opinion. A discrepancy has been established between the types of forensic examination and the specialties of experts for which the qualification of a forensic expert is assigned in departmental lists.
It has been proposed to unify the interdepartmental approach to the classification of forensic examinations in order to avoid errors that could lead to illegal and unfounded court decisions. The issue of unification can be resolved by developing a general approach to the classification of types and types of forensic examinations, enshrined in an interdepartmental regulatory act, which should be based on the criteria of the general theory of forensic examination. The creation of a unified list of types of forensic examinations and their corresponding expert specialties can open up ways to solve many issues facing the expert community. Taking into account the fact that at the time it is planned to provide opinions by experts in electronic form, the creation of a forensic expert’s office and its integration with the Unified Judicial Information and Telecommunication System, the creation of a modern unified list by types of forensic examinations and their corresponding expert specialtiesis on the agenda.
Blood cell image recognition using texture and neural networks for leukemia diagnosis.
Morphological analysis of blood cell images is usually performed manually by an expert, but this method has many disadvantages, including slow analysis, low accuracy, and the results depend on the skill of the operator. This reduces the chance of a correct diagnosis in detecting acute lymphoblastic leukemia, a potentially fatal blood cancer if left untreated.
The study developed and presented an automated method for identifying and classifying leukocytes using microscopic images of peripheral blood smears. The proposed neural random threshold classifier achieved a recognition rate of 98.3% when the data was divided into 80% training set and 20% test set. The proposed system can be implemented as a computational tool to detect other diseases in which blood cells undergo changes, such as Covid-19. This will eliminate the subjective factor that is invariably inherent in the case of assessment by experts, focusing only on their experience. Therefore, the system is important for conducting expert assessments in medical diagnostics, as part of a decision support system that reduces the likelihood of risks of incorrect diagnosis of diseases.
Analysis of the capabilities of the Internet of Things in monitoring the physiological state and location of personnel on an offshore oil platform.
The possibilities of using the Internet of Things (IoT) to ensure personnel safety on an offshore oil platform were explored. For this purpose, IoT applications and technologies for monitoring the physiological state and location of personnel are analyzed. The use of cloud technologies, big data technologies and artificial intelligence for the development of systems that allow monitoring and, if necessary, making appropriate decisions through systematic monitoring of personnel status is considered. The basis for decision making is expert assessments of deviations of real-time parameter values from the norm. Practical problems associated with the use of Internet of Things technologies in various areas of healthcare are presented.
Methodological approaches to intelligent management of human factors on offshore oil and gas platforms.
The problems of increasing the efficiency of managing the safety and health of shift workers in the offshore oil and gas industry through the prism of the human factor have been studied. The environmental features, hazards and risks, working and professional conditions in the offshore sector are taken into account. The concept of a person-centered approach to personnel safety and health management is proposed, which involves the inclusion of employees in the management loop as the main component of their contextual environment. This involves constant remote monitoring of vital health indicators of employees and, at the same time, parameters of the context-dependent environment of each of them, as well as an expert assessment of the deviation of these parameters from the norm.
Decision support in a remote health monitoring system for shift workers on an offshore oil platform.
A methodological approach to the synthesis of solutions in a geographically distributed intelligent health management system for oil workers working in the maritime industry is proposed. A functional model of the health management system for workers employed on offshore oil platforms has been developed and implemented in three stages: monitoring and assessment of health indicators and environmental parameters of each employee, as well as decision-making. These interacting operations integrate layers of a distributed intelligent healthcare management system.
Appropriate approaches to implementing decision support processes are presented and one of the possible methods for assessing generated data and making decisions using fuzzy pattern recognition is described. Models of a fuzzy ideal image and a fuzzy real image of the employee’s health state have been developed and an algorithm for expert assessment of the deviation of the formed medical indicators from the norm is described.
Expert assessment of engineering and planning solutions to improve the safety of vulnerable road users in Ukraine.
The study is devoted to the analysis of the main methodological provisions for conducting an expert assessment (audit) of engineering and planning solutions, organizational and management measures to ensure road safety (RS) for vulnerable road users.
The results of the study are presented in the form of the authors’ opinions on the following problems (areas of activity) in the field of road safety, which are subject to expert assessment:
– the real level of road accidents among the main categories of vulnerable road users in Ukraine;
– modern scientific, methodological and engineering planning approaches to the formation of individual elements of an effective and safe transport infrastructure, as well as progressive traffic management systems (TS);
– the possibilities and feasibility of implementing engineering and planning solutions, organizational and management measures to improve road safety (RS).
Files
46-Book Manuscript-177-1-10-20231223.pdf
Files
(13.8 MB)
Name | Size | Download all |
---|---|---|
md5:f92151325d0080dae8e7c3d4e1f07290
|
13.8 MB | Preview Download |
Additional details
References
- Lim, Y. C., Marolf, A., Estoppey, N., Massonnet, G. (2021). A probabilistic approach towards source level inquiries for forensic soil examination based on mineral counts. Forensic Science International, 328. doi: https://doi.org/10.1016/j.forsciint.2021.111035
- Rappert, B., Wheat, H., Wilson-Kovacs, D. (2020). Rationing bytes: managing demand for digital forensic examinations. Policing and Society, 31 (1), 52–65. doi: https://doi.org/10.1080/10439463.2020.1788026
- Fedorenko, V. L., Timoshchik, L. P. (2019). Forensic examination on intellectual property: genesis, concept, classification and system. Expert: Paradigm of Law and Public Administration, 3 (1), 11–52. doi: https://doi.org/10.32689/2617-9660-2019-3-1-11-52
- Shramko, O. (2019). The essence and peculiarities of conducting forensic evaluation expertise. Innovative Economy, 5–6, 175–180. doi: https://doi.org/10.37332/2309-1533.2019.5-6.25
- Dufeniuk, O. M. (2018). Ekspertyza u kryminalnomu provadzhenni za zakonodavstvom Ukrainy ta Polshchi: porivnialne doslidzhennia. Lviv: LvDUVS, 272.
- Poliarush, A. (2017). Mozhlyvosti deiakykh sudovykh ekspertyz, shcho pryznachaiutsia u protsesi rozsliduvannia zlochyniv, pov'iazanykh iz nezakonnym obihom pidaktsyznykh tovariv. Pidpryiemnytstvo, hospodarstvo i pravo, 8, 185–188. Available at: http://pgp-journal.kiev.ua/archive/2017/8/40.pdf
- Pro zatverdzhennia Instruktsii pro pryznachennia ta provedennia sudovykh ekspertyz ta ekspertnykh doslidzhen ta Naukovo-metodychnykh rekomendatsii z pytan pidhotovky ta pryznachennia sudovykh ekspertyz ta ekspertnykh doslidzhen (1998). Nakaz Ministerstva yustytsii Ukrainy No. 53/5. 08.10.1998. Available at: https://zakon.rada.gov.ua/laws/show/z0705-98#Text
- Pro zatverdzhennia Polozhennia pro Tsentralnu ekspertno-kvalifikatsiinu komisiiu pry Ministerstvi yustytsii Ukrainy ta atestatsiiu sudovykh ekspertiv (2015). Nakaz Ministerstva yustytsii Ukrainy No. 301/5. 03.03.2015. Available at: https://zakon.rada.gov.ua/laws/show/z0249-15#Text
- Pro zatverdzhennia Polozhennia pro Ekspertno-kvalifikatsiinu komisiiu MVS ta poriadok provedennia atestatsii sudovykh ekspertiv Ekspertnoi sluzhby MVS (2020). Nakaz MVS Ukrainy No. 675. 21.09.2020. Available at: https://zakon.rada.gov.ua/laws/show/z0022-21#Text
- Pro zatverdzhennia Polozhennia pro ekspertno-kvalifikatsiinu komisiiu Sluzhby bezpeky Ukrainy ta atestatsiiu sudovykh ekspertiv (2014). Nakaz Sluzhba bezpeky Ukrainy No. 855. 24.12.2014. Available at: https://zakon.rada.gov.ua/laws/show/z0044-15#n12
- Pro zatverdzhennia Zmin do deiakykh normatyvno-pravovykh aktiv z pytan sudovo-ekspertnoi diialnosti (2021). Nakaz Ministerstva yustytsii Ukrainy No. 2117/5. 10.06.2021. Available at: https://zakon.rada.gov.ua/laws/show/z0792-21#n64
- Pro zatverdzhennia Zmin do Polozhennia pro Tsentralnu ekspertno-kvalifikatsiinu komisiiu pry Ministerstvi yustytsii Ukrainy ta atestatsiiu sudovykh ekspertiv (2022). Nakaz Ministerstva yustytsii Ukrainy No. 3819. 12.09.2022. Available at: https://zakon.rada.gov.ua/laws/show/z1046-22#n53
- Pro sudovu ekspertyzu (1994). Zakon Ukrainy No. 4038-XII. 25.02.1994. Available at: https://zakon.rada.gov.ua/laws/show/4038-12#
- Kaluzhna, O. (2018). «Carthago delenda est – Karfahen maie buty zruinovano!» (pro derzhavnu ekspertnu monopoliiu). Problemy derzhavotvorennia i zakhystu prav liudyny v Ukraini, Lviv: Yurydychnyi fakultet Lvivskoho natsionalnoho universytetu imeni Ivana Franka, 2, 209–215. Available at: https://law.lnu.edu.ua/wp-content/uploads/2018/02/konf_2018_2.pdf
- Oliinyk, O. O., Halunko, V. V., Yeshchuk, O. M. (2015). Administratyvno-pravove rehuliuvannia sudovo-ekspertnoi diialnosti. Kherson: Hrin D. S., 224.
- Pro zatverdzhennia Polozhennia pro Ekspertno-kvalifikatsiinu komisiiu ta atestatsiiu sudovykh ekspertiv Derzhavnoi prykordonnoi sluzhby Ukrainy (2010). Nakaz Administratsiia Derzhkordonsluzhby No. 891. 23.11.2010. Available at: https://zakon.rada.gov.ua/laws/show/z1246-10#Text
- Poriadok provedennia atestatsii pratsivnykiv ustanov, v yakykh provodiatsia sudovo-medychni ekspertyzy, dlia prysvoiennia (pidtverdzhennia) kvalifikatsii sudovoho eksperta (2018). Nakaz MOZ Ukrainy No. 1361. 20.07.2018. Available at: https://zakon.rada.gov.ua/laws/show/z1192-18#n2
- Dovidnyk kvalifikatsiinykh kharakterystyk profesii pratsivnykiv VYPUSK 78 Okhorona zdorovia (2002). Nakaz MOZ Ukrainy No. 117. 29.03.2002.Available at: https://zakon.rada.gov.ua/rada/show/va117282-02#n1585
- Pro zatverdzhennia Poriadku provedennia atestatsii ta prysvoiennia kvalifikatsii sudovoho eksperta i kvalifikatsiinykh klasiv sudovo-psykhiatrychnym ekspertam ta pozbavlennia kvalifikatsii sudovoho eksperta i kvalifikatsiinykh klasiv sudovo-psykhiatrychnykh ekspertiv (2017). Nakaz MOZ Ukrainy No. 889. 02.08.2017. Available at: https://zakon.rada.gov.ua/laws/show/z1060-17#Text
- Working Groups ENFSI. Available at: https://enfsi.eu/about-enfsi/structure/working-groups
- González, C. (2011). Recognition of Textures in Medical Images. UNAM. Available at: https://xdoc.mx/documents/tesis-unam-5ddae474b690d
- Mammadova, M., Bayramov, N., Jabrayilova, Z. (2021). Development of the principles of fuzzy rule-based system for hepatocelular carcinoma staging. EUREKA: Physics and Engineering, 3, 3–13. doi: https://doi.org/10.21303/2461-4262.2021.001829
- Mammadova, M., Jabrayilova, Z. (2022). Synthesis of decision making in a distributed intelligent personnel health management system on offshore oil platform. EUREKA: Physics and Engineering, 4, 179–192. doi: https://doi.org/10.21303/2461-4262.2022.002520
- Huerta Aragonés, J., Cela de Julián, E. E. (2019). Practical Hematology: Interpretation of the Complete Blood Count and Coagulation Tests. Pediatric Update Congress 2019. Madrid: Lúa Ed. 3.0, 507–528.
- Rahi, M. S., Jindal, V., Reyes, S.-P., Gunasekaran, K., Gupta, R., Jaiyesimi, I. (2021). Hematologic disorders associated with COVID-19: a review. Annals of Hematology, 100 (2), 309–320. doi: https://doi.org/10.1007/s00277-020-04366-y
- Zini, G., Bellesi, S., Ramundo, F., d'Onofrio, G. (2020). Morphological anomalies of circulating blood cells in COVID‐19. American Journal of Hematology, 95 (7), 870–872. doi: https://doi.org/10.1002/ajh.25824
- Salib, C., Khattar, P., Cheng, J., Teruya-Feldstein, J. (2020). Atypical Peripheral Blood Cell Morphology in COVID-19 (Sars-CoV-2) Patients from Mount Sinai Health System in New York City. Blood, 136, 26–27. doi: https://doi.org/10.1182/blood-2020-142581
- Introcaso, G., Biondi, M. L. (2022). Morphological anomalies of blood cells in COVID-19 patients. Open Journal of Clinical and Medical Images, 2 (2), 1080. doi: https://doi.org/10.52768/2833-2725/1080
- Guía de Referencia Rápida (2018). Diagnosis and Treatment Lymphoblastic Leukemia Acute In The Adult. Instituto Mexicano del Seguro Social. Dirección de Prestaciones Médicas. Unidad de Atención Médica. Coordinación de Unidades Médicas de Alta Especialidad. División de Excelencia Clínica.
- Putzu, L., Caocci, G., Di Ruberto, C. (2014). Leucocyte classification for leukaemia detection using image processing techniques. Artificial Intelligence in Medicine, 62 (3), 179–191. doi: https://doi.org/10.1016/j.artmed.2014.09.002
- Piuri, V., Scotti, F. (2004). Morphological classification of blood leucocytes by microscope images. 2004 IEEE International Conference OnComputational Intelligence for Measurement Systems and Applications, 2004. CIMSA. doi: https://doi.org/10.1109/cimsa.2004.1397242
- Ruberto, C. D., Putzu, L. (2014). Accurate Blood Cells Segmentation through Intuitionistic Fuzzy Set Threshold. 2014 Tenth International Conference on Signal-Image Technology and Internet-Based Systems. doi: https://doi.org/10.1109/sitis.2014.43
- Ongun, G., Halici, U., Leblebicioglu, K., Atalay, V., Beksac, M., Beksac, S. (2001). An automated differential blood count system. 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. doi: https://doi.org/10.1109/iembs.2001.1017309
- Mohamed, M., Far, B., Guaily, A. (2012). An efficient technique for white blood cells nuclei automatic segmentation. 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC). doi: https://doi.org/10.1109/icsmc.2012.6377703
- Mohammed, E. A., Mohamed, M. M. A., Far, B. H., Naugler, C. (2014). Peripheral blood smear image analysis: A comprehensive review. Journal of Pathology Informatics, 5 (1), 9. doi: https://doi.org/10.4103/2153-3539.129442
- Madhloom, H. T., Kareem, S. A., Ariffin, H., Zaidan, A. A., Alanazi, H. O., Zaidan, B. B. (2010). An Automated White Blood Cell Nucleus Localization and Segmentation using Image Arithmetic and Automatic Threshold. Journal of Applied Sciences, 10 (11), 959–966. doi: https://doi.org/10.3923/jas.2010.959.966
- Halim, N. H. A., Mashor, M. Y., Hassan, R. (2011). Automatic Blasts Counting for Acute Leukemia Based on Blood Samples. International Journal of Research and Reviews in Computer Science, 2 (4), 971–976. Available at: https://www.proquest.com/scholarly-journals/automatic-blasts-counting-acute-leukemia-based-on/docview/903775031/se-2
- Tang, J. (2010). A color image segmentation algorithm based on region growing. 2010 2nd International Conference on Computer Engineering and Technology. doi: https://doi.org/10.1109/iccet.2010.5486012
- Navon, E., Miller, O., Averbuch, A. (2005). Color image segmentation based on adaptive local thresholds. Image and Vision Computing, 23 (1), 69–85. doi: https://doi.org/10.1016/j.imavis.2004.05.011
- Mahameed, A. I., Ahmed, M. K., Abdullah, N. B. (2022). Iris recognition method based on segmentation. EUREKA: Physics and Engineering, 2, 166–176. doi: https://doi.org/10.21303/2461-4262.2022.002341
- Kumar, R. S., Verma, A., Singh, J. (2007). Color Image Segmentation and Multi-Level Thresholding by Maximization of Conditional Entropy. International Journal of Computer and Information Engineering, 1 (6), 1633–1641. doi: https://doi.org/10.5281/zenodo.1059435
- Scotti, F. (2005). Automatic morphological analysis for acute leukemia identification in peripheral blood microscope images. CIMSA. 2005 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, 2005. doi: https://doi.org/10.1109/cimsa.2005.1522835
- Mahmood, N. H., Lim, P. C., Mazalan, S. M., Razak, M. A. A. (2013). Blood cells extraction using color based segmentation technique. Int. J. Life Sci. Biotechnol. Pharma Res, 2 (2), 233–240. Available at: https://www.researchgate.net/publication/289676562_Blood_cells_extraction_using_color_based_segmentation_technique
- Di Ruberto, C., Loddo, A., Puglisi, G. (2020). Blob Detection and Deep Learning for Leukemic Blood Image Analysis. Applied Sciences, 10 (3), 1176. doi: https://doi.org/10.3390/app10031176
- Skuratov, V., Kuzmin, K., Nelin, I., Sedankin, M. (2020). Application of a convolutional neural network and a Kohonen network for accelerated detection and recognition of objects in images. EUREKA: Physics and Engineering, 4, 11–18. doi: https://doi.org/10.21303/2461-4262.2020.001360
- Skuratov, V., Kuzmin, K., Nelin, I., Sedankin, M. (2020). Application of kohonen self-organizing map to search for region of interest in the detection of objects. EUREKA: Physics and Engineering, 1, 62–69. doi: https://doi.org/10.21303/2461-4262.2020.001133
- Labati, R. D., Piuri, V., Scotti, F. (2011). All-IDB: The acute lymphoblastic leukemia image database for image processing. 2011 18th IEEE International Conference on Image Processing. doi: https://doi.org/10.1109/icip.2011.6115881
- Acharya, V., Kumar, P. (2019). Detection of acute lymphoblastic leukemia using image segmentation and data mining algorithms. Medical & Biological Engineering & Computing, 57 (8), 1783–1811. doi: https://doi.org/10.1007/s11517-019-01984-1
- Mirmohammadi, P., Ameri, M., Shalbaf, A. (2021). Recognition of acute lymphoblastic leukemia and lymphocytes cell subtypes in microscopic images using random forest classifier. Physical and Engineering Sciences in Medicine, 44 (2), 433–441. doi: https://doi.org/10.1007/s13246-021-00993-5
- He, K., Zhang, X., Ren, S., Sun, J. (2016). Identity Mappings in Deep Residual Networks. Computer Vision – ECCV 2016, 630–645. doi: https://doi.org/10.1007/978-3-319-46493-0_38
- Rodrigues, L. F., Backes, A. R., Travençolo, B. A. N., de Oliveira, G. M. B. (2022). Optimizing a Deep Residual Neural Network with Genetic Algorithm for Acute Lymphoblastic Leukemia Classification. Journal of Digital Imaging, 35 (3), 623–637. doi: https://doi.org/10.1007/s10278-022-00600-3
- Chand, S., Vishwakarma, V. P. (2022). A novel Deep Learning Framework (DLF) for classification of Acute Lymphoblastic Leukemia. Multimedia Tools and Applications, 81 (26), 37243–37262. doi: https://doi.org/10.1007/s11042-022-13543-2
- Rejula, M. A., Amutha, S., Shilpa, G. M. (2023). Classification of acute lymphoblastic leukemia using improved ANFIS. Multimedia Tools and Applications, 82 (23), 35475–35491. doi: https://doi.org/10.1007/s11042-023-15113-6
- Renuka, T. V., Surekha, B. (2021). Acute-Lymphoblastic Leukemia Detection Through Deep Transfer Learning Approach of Neural Network. Lecture Notes in Networks and Systems, 163–170. doi: https://doi.org/10.1007/978-981-33-4073-2_17
- Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M. et al. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. doi: https://doi.org/10.1016/j.media.2017.07.005
- Alam, A., Anwar, S. (2021). Detecting Acute Lymphoblastic Leukemia Through Microscopic Blood Images Using CNN. Trends in Wireless Communication and Information Security, 207–214. doi: https://doi.org/10.1007/978-981-33-6393-9_22
- Wady, S. H. (2022). Classification of Acute Lymphoblastic Leukemia through the Fusion of Local Descriptors. UHD Journal of Science and Technology, 6 (1), 21–33. doi: https://doi.org/10.21928/uhdjst.v6n1y2022.pp21-33
- Alagu, S., Bagan, K. B. (2019). Acute Lymphoblastic Leukemia Diagnosis in Microscopic Blood Smear Images Using Texture Features and SVM Classifier. Alliance International Conference on Artificial Intelligence and Machine Learning (AICAAM), 175–186. Available at: https://www.researchgate.net/publication/343444613_Acute_Lymphoblastic_leukemia_diagnosis_in_microscopic_blood_smear_images_using_texture_features_and_SVM_classifier
- González, C., Baydyk, T., Kussul, E. (2010). Recognition of Textures in Medical Images. 1st International Congress on Instrumentation and Applied Sciences ICIAS.
- Schwartz, R. (1984). Pat. No. US4433912A. Method and a circuit for determining a contour in an image. published: 28.02.1984. Available at: https://patents.google.com/patent/US4433912A/en?oq=4433912+US
- Duda, R., Hart, P., Stork, D. (2000). Pattern classification. John Wiley & Sons, Inc., 680.
- Goltsev, A., Gritsenko, V., Kussul, E., Baidyk, T. (2015). Finding the Texture Features Characterizing the Most Homogeneous Texture Segment in the Image. Lecture Notes in Computer Science, 287–300. doi: https://doi.org/10.1007/978-3-319-19258-1_25
- Roldan-Serrato, L., Baydyk, T., Kussul, E., Escalante-Estrada, A., Rodriguez, M. T. G. (2015). Recognition of pests on crops with a random subspace classifier. 2015 4th International Work Conference on Bioinspired Intelligence (IWOBI). doi: https://doi.org/10.1109/iwobi.2015.7160138
- Roldán-Serrato, K. L., Escalante-Estrada, J. A. S., Rodríguez-González, M. T. (2018). Automatic pest detection on bean and potato crops by applying neural classifiers. Engineering in Agriculture, Environment and Food, 11 (4), 245–255. doi: https://doi.org/10.1016/j.eaef.2018.08.003
- Bennett, J. M., Catovsky, D., Daniel, M., Flandrin, G., Galton, D. A. G., Gralnick, H. R., Sultan, C. (1976). Proposals for the Classification of the Acute Leukaemias French‐American‐British (FAB) Co‐operative Group. British Journal of Haematology, 33 (4), 451–458. doi: https://doi.org/10.1111/j.1365-2141.1976.tb03563.x
- Baidyk, T., Kussul, E., Makeyev, O. (2005). Texture Recognition with Random Subspace Neural Classifier. WSEAS Transactions on Circuits and Systems, 4 (4), 319–324.
- Baidyk, T., Kussul, E., Makeyev, O. (2008). General purpose image recognition systems based on neural classifiers. Progress in Neurocomputing Research. Chap. 3. NOVA Publishers, 83–114.
- Kussul, E., Makeyev, O., Baidyk, T., Martín-Gonzalez, A., Toledo-Ramirez, G. (2011). Some Applications of Computer Vision Systems in Micromechanics. Computer Vision. Nova Science Publishers.
- Gayathri, S., Jyothi, R. L. (2018). An Automated Leucocyte Classification for Leukemia Detection. International Research Journal of Engineering and Technology (IRJET), 5 (5), 4254–4264. Available at: https://www.irjet.net/archives/V5/i5/IRJET-V5I5908.pdf
- Curtidor, A., Kussul, E., Baydyk, T., Mammadova, M. (2023). Analysis and automated classification of images of blood cells to diagnose acute lymphoblastic leukemia. EUREKA: Physics and Engineering, 5, 177–190. doi: https://doi.org/10.21303/2461-4262.2023.003070