Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

Published January 4, 2024 | Version 1.0
Dataset Open

SWECA: High-resolution daily Snow Water Equivalent estimates for Mountainous Central Asia (1979–2016)

  • 1. ROR icon Humboldt-Universität zu Berlin
  • 2. ROR icon Leibniz Institute of Agricultural Development in Transition Economies

Description

The dataset provides daily estimates of snow water equivalent (SWE) for Central Asia, at a spatial resolution of 1km, covering the period from 1979 to 2016. The dataset were generated within the SWECA project, supported by GEO Mountains under the Adaptation at Altitude Programme (Swiss Agency for Development and Cooperation Project Number: 7F-10208.01.02).

Spatial Domain:
The dataset encompasses the Central Asian region within the bounding coordinates 61W, 81E, 44N, 34S, which covers the Tian-Shan and Pamir mountains, a larger extent of the Hindukush mountains, and the northern part of the Karakoram mountains.

Data Generation and Validation:
The SWE data was generated using the GEMS snow model (Umirbekov, Essery, and Müller, 2024), forced by CHELSA-W5E5 daily climate data (Karger et al., 2023). Simulated SWE was validated using historical records of SWE from 1980 to 1992 from Central Asian Snow Survey database (Bedford and Tsarev, 2001), and by comparing extent of the modelled SWE with MODIS derived snowcover for two consecutive hydrological years (2015-2016). Data generation procedures and validation results will be provided in upcoming data description paper (TBD).

File Descriptions:
The daily SWE estimates (in millimeters) are compiled into 37 GeoTIFF files, each corresponding to a hydrological year from 1979 to 2016. The hydrological year begins on October 1st and concludes on September 30th of next year. To avoid the need for auxiliary files, the corresponding date of each layer in the GeoTIFF file is incorporated as a layer`s name. 

References: 

  • Bedford, D. and Tsarev, B. (2001) ‘Central Asian Snow Cover from Hydrometeorological Surveys, Version 1 [Dataset]’. Boulder, Colorado USA.: National Snow and Ice Data Center. doi: 10.7265/N51Z4291.
  • Karger, D. N. et al. (2023) ‘CHELSA-W5E5: daily 1km meteorological forcing data for climate impact studies’, Earth System Science Data, 15(6), pp. 2445–2464. doi: 10.5194/essd-15-2445-2023.
  • Riggs, G., Hall, D. and Salomonson, V. (2019) ‘MODIS snow products user guide to collection 6.1: MODIS-derived snow cover retrievals using the cloud-gap-filled MOD10A1F product’.
  • Umirbekov, A., Essery, R. and Müller, D. (2024) ‘GEMS v1.0: Generalizable Empirical Model of Snow Accumulation and Melt, based on daily snow mass changes in response to climate and topographic drivers’, Geoscientific Model Development, 17(2), pp. 911–929. doi: 10.5194/gmd-17-911-2024

Files

SWECA_v01_19791001_19800930.tif

Files (38.7 GB)

Name Size Download all
md5:2040d4441bce914c60b942bfd5817417
1.0 GB Preview Download
md5:4db0e308bc67b23626ce716519242b28
1.1 GB Preview Download
md5:c51173789dbd0c7c7dec17194731d4ca
969.3 MB Preview Download
md5:2e379c35db6978fb271bdfc53bdc19df
1.1 GB Preview Download
md5:861cde139224fe1d5af3ea019868d705
965.1 MB Preview Download
md5:dacae40b008218241a51e47f31cd6565
1.1 GB Preview Download
md5:6f976af8ce54a5ffcaacc461c9e23598
1.0 GB Preview Download
md5:3a6ac8660a2625b426db4834557f83ba
1.1 GB Preview Download
md5:74fe1e2849636a382abbafd9eb4ee34c
1.2 GB Preview Download
md5:972ba3351ba6f4c4a06a6e86303467ef
1.0 GB Preview Download
md5:d640cb6f04168e6b4742bab9150d2fe0
1.1 GB Preview Download
md5:5bb4fcac02a5bcfdde37aca81b479cfc
1.1 GB Preview Download
md5:42451311c770b846fe2b18db21ac8ac9
1.1 GB Preview Download
md5:ba5714b1bd64e714f6ef5b4e5b237413
1.1 GB Preview Download
md5:8bc1e4fc9e679799ddc1a60942013ff8
1.2 GB Preview Download
md5:5fcd5af87df1f3d01cb78cc5ce4eb743
1.0 GB Preview Download
md5:a61f1c3c0f9ab98aa6a8618e1f7fd6e5
1.1 GB Preview Download
md5:2d12fdac1feef113890a91757a1cbd3f
903.8 MB Preview Download
md5:f0bb1c9310d2904b9544ab21cae1ce35
1.2 GB Preview Download
md5:eb7bb35f1b516540b76b4bd34d07d73a
767.2 MB Preview Download
md5:4dde9c199ac69e8227ad3172a007f1df
739.9 MB Preview Download
md5:4c2e04d044ba6d9d5c947668fad3391e
1.2 GB Preview Download
md5:77a67ee6be5a30d13b78b9d286e931e9
1.5 GB Preview Download
md5:c54f26a5ce8d6aa719740491bf16a7ef
1.1 GB Preview Download
md5:aa78422c25f1874488dbe7afdfbc24b5
978.8 MB Preview Download
md5:0d033d8a13808cea07f086310d4feed5
1.1 GB Preview Download
md5:b1aa555ca6ed09eeef3e5227b4aee8cc
963.9 MB Preview Download
md5:461d0765d940d4a0111c9e1be2c97a57
902.4 MB Preview Download
md5:e08eb52ebc439704628ab07c55a9b3e0
940.8 MB Preview Download
md5:d4d29b620069ebe2783414bd4cffc2c9
991.8 MB Preview Download
md5:9b34e90ad7c2e71f7172439cfba46371
1.0 GB Preview Download
md5:a80af22da75891c1ac3df666d18eb726
859.8 MB Preview Download
md5:5f7a9c896551431a590b14a3399c3deb
1.2 GB Preview Download
md5:069226b0dcee7ecaf572b780239d3d77
982.5 MB Preview Download
md5:15dad06e280198f9c103f2eab48c68c0
958.5 MB Preview Download
md5:984893ebd12c4ebc547e67fc8545d1ba
1.0 GB Preview Download
md5:10ac96d8b4b3986b6fd90dfe63fd5da6
919.8 MB Preview Download