Published January 2, 2024 | Version v1
Journal article Open

SARS-CoV-2 Antibody Prevalence in Unvaccinated Children and Change in Antibody Levels Between 2020-2022

  • 1. Department of Medical Microbiology, Ankara Etlik City Hospital, Ankara, Türkiye.
  • 2. Department of Medical Microbiology, Başakşehir Çam and Sakura City Hospital, İstanbul, Türkiye.
  • 3. Department of Pediatric Infectious Diseases, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Türkiye.
  • 4. Department of Medical Microbiology, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Türkiye.
  • 5. Medical Biochemistry Laboratory, Kütahya Tavşanlı Assoc. Prof. Mustafa Kalemli State Hospital, Ankara, Türkiye.

Description

Özet

Dünya Sağlık Örgütü (DSÖ) tarafından COVID-19 pandemisinin ilan edilmesinden sonra çeşitli kısıtlamalar uygulamaya konulmuş ve okullarda yüz yüze eğitime ara verilmiştir. Bazı ülkelerde ise pediatrik yaş grubunda COVID-19 aşıları için acil kullanım onayı verilmiştir. Bu çalışmada COVID-19 aşısı yapılmamış çocuklardaki SARS-CoV-2 antikor düzeylerini araştırmak amaçlanmıştır. Çalışmaya Ekim 2020 - Nisan 2022 tarihleri arasında Necmettin Erbakan Üniversitesi Tıp Fakültesi Hastanesi Çocuk Hastalıkları kliniklerine farklı semptomlarla başvuran 0-12 yaş, COVID-19 aşısı olmamış, 1.000 çocuk hasta dahil edildi. Bu çocuklara ait serum örneklerinde ELISA yöntemiyle SARS-CoV-2 S total antikor seviyeleri test edildi. Çalışmaya dahil edilen çocuk hastaların 535’i (%53.5) erkek, 465’i (%46.5) kız idi. Anti-SARS-CoV-2 S total Ig pozitiflik oranları kız çocuklarda %75.9 ve erkek çocuklarda %78.5 olup, aralarındaki fark istatistik olarak anlamlı değildi (p>0.05). Yıllara göre anti-SARS-CoV-2 S total Ig pozitiflik oranları incelendiğinde 2020 yılında 23 (%43.4), 2021 yılında 183 (%60) ve 2022 yılında 567 hastanın (%88.3) antikor testi pozitif bulundu. Yıllara göre antikor sonuçları arasındaki fark istatistiksel olarak anlamlı idi (p<0.001). Antikor testi pozitif hastaların SARS-CoV-2 antikor seviyelerinin medyan değeri 2020 yılında 46 AU/ml (min 5, max: 214 AU/ml), 2021 yılında 130 AU/ml (min:1, max:250 AU/ml) ve 2022 yılında 250 AU/ml (min:1, max:250 AU/ml) olarak bulundu. Anti-SARS-CoV-2 S Ig total pozitif olan hastaların antikor seviyeleri yıllara göre değerlendirildiğinde aralarındaki fark istatistiksel olarak anlamlı bulundu (p<0.05). Çalışmamızda 12 yaş ve altı aşısız çocuklarda SARS-CoV-2 S total antikor pozitiflik oranın %90’lara ulaştığı tespit edildi. Ülkemizde COVID-19 aşısı yapılmamış 12 yaş ve altı çocukların SARS-CoV-2 antikor durumlarının belirlenmesi hem doğal bağışıklık yoluyla immünizasyon hakkında bilgi verecek hem de çocuklar için COVID-19 aşı ihtiyacının belirlenmesi ve planlanmasında etkili olacaktır.

 Abstract

After the declaration of the COVID-19 pandemic by the World Health Organization (WHO), various restrictions were implemented, and face-to-face education was suspended in schools. In some countries, COVID-19 vaccines emergency use authorization has been granted for the pediatric age group. This study aimed to investigate COVID-19 antibody level in children who have not been vaccinated against COVID-19. A total of 1,000 pediatric patients aged 0-12 years, unvaccinated against COVID-19, admitted to Necmettin Erbakan University Medical Faculty Hospital Pediatrics clinics with different symptoms between October 2020 and April 2022 were included in this study. SARS-CoV-2 S total antibody levels were tested by ELISA method from the sera samples of these children. Of the children included in the study, 535 (53.5%) were male and 465 (46.5%) were female. Anti-SARS-CoV-2 S total Ig positivity rates were 75.9% in girls and 78.5% in boys and the difference between them was not statistically significant (p>0.05). When the anti-SARS-CoV-2 S total Ig positivity rates of children were evaluated according to years, 23 (43.4%) in 2020, 183 (60%) in 2021, and 567 (88.3%) in 2022 was found positive. The difference between antibody results by years was found to be statistically significant (p<0.001). Median value of SARS-CoV-2 antibody levels of patients with positive antibody test in 2020 46 AU/ml (min 5, max: 214 AU/ml), in 2021 130 AU/ml (min:1, max: 250 AU/ml), and in 2022 it was found to be 250 AU/ml (min:1, max: 250 AU/ml). When the antibody levels of patients with anti-SARS-CoV-2 S Ig total positive were evaluated, the difference between years was found to be statistically significant (p<0.05). In our study, it was determined that the rate of SARS-CoV-2 S total antibody positivity reached 90% in unvaccinated children aged 12 and younger. Determining the SARS-CoV-2 antibody status of children aged 12 and under who unvaccinated against COVID-19 in our country will both give information about immunization by natural immunity and will be effective in deciding and planning the need for COVID-19 vaccination for children.

Notes

Aşısız Çocuklarda SARS-CoV-2 Antikor Prevalansı ve 2020-2022 Yılları Arasında Antikor Düzeylerindeki Değişim

Files

jmvi.2024.85.pdf

Files (453.4 kB)

Name Size Download all
md5:8ca97ccb0ff7dd53434d3cbbbb672bd1
453.4 kB Preview Download

Additional details

References

  • 1. Güner Ö, Buzgan T. The First Three Months of the COVID-19 Pandemic: The World Health Organization's Response. J Mol Virol Immunol 2021; 2(3): 86-101.
  • 2. Nikolopoulou GB, Maltezou HC. COVID-19 in Children: Where do we Stand? Arch Med Res 2022; 53(1): 1-8.
  • 3. Chinawa AT, Chinawa JM, Ossai EN, Obinna N, Onukwuli V, Aronu AE, et al. Maternal level of awareness and predictors of willingness to vaccinate children against COVID 19; A multi-center study. Hum Vaccin Immunother 2021; 17(11): 3982-8.
  • 4. Zheng J, Deng Y, Zhao Z, Mao B, Lu M, Lin Y, et al. Characterization of SARS-CoV-2-specific humoral immunity and its potential applications and therapeutic prospects. Cell Mol Immunol 2022; 19(2): 150-7.
  • 5. Zhang Y, Xu J, Jia R, Yi C, Gu W, Liu P, et al. Protective humoral immunity in SARS-CoV-2 infected pediatric patients. Cell Mol Immunol 2020; 17(7): 768-70.
  • 6. Gündüz A, Türkoğlu G, Yakupoğulları Y. Symptomatic Reinfections in COVID-19 Patients: A Retrospective Study in the Pre-Vaccination Period. J Mol Virol Immunol 2021; 2(3): 107-114.
  • 7. Rahman S, Rahman MM, Miah M, Begum MN, Sarmin M, Mahfuz M, et al. COVID-19 reinfections among naturally infected and vaccinated individuals. Sci Rep 2022; 12(1): 1438.
  • 8. Lee E, Oh JE. Humoral Immunity against SARS-CoV-2 and the Impact on COVID-19 Pathogenesis. Mol Cells 2021; 44(6): 392-400.
  • 9. Yan X, Chen G, Jin Z, Zhang Z, Zhang B, He J, et al. Anti-SARS-CoV-2 IgG levels in relation to disease severity of COVID-19. J Med Virol 2022; 94(1): 380-3.
  • 10. Obaro S. COVID-19 herd immunity by immunisation: are children in the herd? Lancet Infect Dis 2021; 21(6): 758-9.
  • 11. US Food and Drug Administration (FDA), Silver Spring, Maryland, USA. Coronavirus (COVID-19) Update: FDA Authorizes Moderna and Pfizer-BioNTech COVID-19 Vaccines for Children Down to 6 Months of Age. Available at: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-moderna-and-pfizer-biontech-covid-19-vaccines-children [Accessed June 17, 2023].
  • 12. Hadj Hassine I. Covid-19 vaccines and variants of concern: A review. Rev Med Virol 2022; 32(4): e2313.
  • 13. Rabaan AA, Al-Ahmed SH, Albayat H, Alwarthan S, Alhajri M, Najim MA, et al. Variants of SARS-CoV-2: Influences on the Vaccines' Effectiveness and Possible Strategies to Overcome Their Consequences. Medicina (Kaunas) 2023; 59(3): 507.
  • 14. Belik M, Liedes O, Vara S, Haveri A, Pöysti S, Kolehmainen P, et al. Persistent T cell-mediated immune responses against Omicron variants after the third COVID-19 mRNA vaccine dose. Front Immunol 2023; 14: 1099246.
  • 15. Scovino AM, Dahab EC, Vieira GF, Freire-de-Lima L, Freire-de-Lima CG, Morrot A. SARS-CoV-2's Variants of Concern: A Brief Characterization. Front Immunol 2022; 13: 834098.
  • 16. Carabelli AM, Peacock TP, Thorne LG, Harvey WT, Hughes J; COVID-19 Genomics UK Consortium; et al. SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat Rev Microbiol 2023; 21(3): 162-77.
  • 17. Frenkel LD, Gomez F, Bellanti JA. COVID-19 in children: Pathogenesis and current status. Allergy Asthma Proc 2021; 42(1): 8-15.
  • 18. Renk H, Dulovic A, Seidel A, Becker M, Fabricius D, Zernickel M, et al. Robust and durable serological response following pediatric SARS-CoV-2 infection. Nat Commun 2022; 13(1): 128.
  • 19. Weisberg SP, Connors TJ, Zhu Y, Baldwin MR, Lin WH, Wontakal S, et al. Distinct antibody responses to SARS-CoV-2 in children and adults across the COVID-19 clinical spectrum. Nat Immunol 2021; 22(1): 25-31.
  • 20. Hoşbul T, Yılmaz Üİ, Aydogan CN, Şahiner F. mRNA Based SARS-CoV-2 Vaccines and Ongoing Researches. J Mol Virol Immunol 2020; 1(4): 19-29.
  • 21. Rockstroh A, Wolf J, Fertey J, Kalbitz S, Schroth S, Lübbert C, et al. Correlation of humoral immune responses to different SARS-CoV-2 antigens with virus neutralizing antibodies and symptomatic severity in a German COVID-19 cohort. Emerg Microbes Infect 2021; 10(1): 774-81.
  • 22. Wisnewski AV, Campillo Luna J, Redlich CA. Human IgG and IgA responses to COVID-19 mRNA vaccines. PLoS One 2021; 16(6): e0249499.
  • 23. Tian X, Liu L, Jiang W, Zhang H, Liu W, Li J. Potent and Persistent Antibody Response in COVID-19 Recovered Patients. Front Immunol 2021; 12: 659041.
  • 24. US Food and Drug Administration (FDA), Silver Spring, Maryland, USA. Elecsys Anti-SARS-CoV-2 S cobas. Available at: https://www.fda.gov/media/144037/download [Accessed June 17, 2023].
  • 25. Riester E, Findeisen P, Hegel JK, Kabesch M, Ambrosch A, Rank CM, et al. Performance evaluation of the Roche Elecsys Anti-SARS-CoV-2 S immunoassay. J Virol Methods 2021; 297: 114271.
  • 26. Jung K, Shin S, Nam M, Hong YJ, Roh EY, Park KU, et al. Performance evaluation of three automated quantitative immunoassays and their correlation with a surrogate virus neutralization test in coronavirus disease 19 patients and pre-pandemic controls. J Clin Lab Anal 2021; 35(9): e23921.
  • 27. Flanagan KL, MacIntyre CR, McIntyre PB, Nelson MR. SARS-CoV-2 Vaccines: Where Are We Now? J Allergy Clin Immunol Pract 2021; 9(10): 3535-43.
  • 28. US Food and Drug Administration (FDA), Silver Spring, Maryland, USA. FDA Authorizes Pfizer-BioNTech COVID-19 Vaccine for Emergency Use in Children 5 through 11 Years of Age. Available at: https://www.fda.gov/news-events/press-announcements/fda-authorizes-pfizer-biontech-covid-19-vaccine-emergency-use-children-5-through-11-years-age [Accessed June 17, 2023].
  • 29. BioNTech SE, Mainz, Rhineland-Palatinate, Germany. Pfizer-BioNTech COVID-19 Vaccine Demonstrates Strong Immune Response, High Efficacy and Favorable Safety in Children 6 Months to Under 5 Years of Age Following Third Dose. Available at: https://www.pfizer.com/news/press-release/press-release-detail/pfizer-biontech-covid-19-vaccine-demonstrates-strong-immune [Accessed May 23, 2023].
  • 30. Creech CB, Anderson E, Berthaud V, Yildirim I, Atz AM, Melendez Baez I, et al.; KidCOVE Study Group. Evaluation of mRNA-1273 Covid-19 Vaccine in Children 6 to 11 Years of Age. N Engl J Med 2022; 386(21): 2011-23. [Crossref] [PubMed]
  • 31. Han B, Song Y, Li C, Yang W, Ma Q, Jiang Z, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy children and adolescents: a double-blind, randomised, controlled, phase 1/2 clinical trial. Lancet Infect Dis 2021; 21(12): 1645-53.
  • 32. Kantarcioglu B, Iqbal O, Lewis J, Carter CA, Singh M, Lievano F, et al. An Update on the Status of Vaccine Development for SARS-CoV-2 Including Variants. Practical Considerations for COVID-19 Special Populations. Clin Appl Thromb Hemost 2022; 28: 10760296211056648.
  • 33. Cojocaru C, Cojocaru E, Turcanu AM, Zaharia DC. Clinical challenges of SARS-CoV-2 variants (Review). Exp Ther Med 2022; 23(6): 416.
  • 34. Chatterjee S, Bhattacharya M, Nag S, Dhama K, Chakraborty C. A Detailed Overview of SARS-CoV-2 Omicron: Its Sub-Variants, Mutations and Pathophysiology, Clinical Characteristics, Immunological Landscape, Immune Escape, and Therapies. Viruses 2023; 15(1): 167.
  • 35. Çiçek K, Özkaya Y, Eser E, Buran ZC, Öztürk Arıkan ZÖ, Akçalı S, et al. Homolog ve Heterolog Aşı Uygulamalarının SARS-CoV-2 Omicron Varyantı Üzerindeki Etkililiği: Manisa Celal Bayar Üniversitesi Sağlık Çalışanları Kohordu. Mikrobiyol Bul 2023; 57(2): 238-51.
  • 36. Morens DM, Folkers GK, Fauci AS. The Concept of Classical Herd Immunity May Not Apply to COVID-19. J Infect Dis 2022; 226(2): 195-8.
  • 37. Wong RSY. COVID-19 vaccines and herd immunity: Perspectives, challenges and prospects. Malays J Pathol 2021; 43(2): 203-17.
  • 38. Mistry P, Barmania F, Mellet J, Peta K, Strydom A, Viljoen IM, et al. SARS-CoV-2 Variants, Vaccines, and Host Immunity. Front Immunol 2022; 12: 809244.
  • 39. Pilz S, Theiler-Schwetz V, Trummer C, Krause R, Ioannidis JPA. SARS-CoV-2 reinfections: Overview of efficacy and duration of natural and hybrid immunity. Environ Res 2022; 209: 112911.
  • 40. Sağlık İ, Payaslıoğlu M, Başkılıç Aydın R, Ener B, Ağca H, Tüzemen NÜ, et al. Antibody Response (IgM and IgG) After Two Doses of Immunization Against SARS-CoV-2 and Comparison of Two Different Third Dose Administrations. J Mol Virol Immunol 2023; 4(1): 1-14.
  • 41. Fazel M, Puntis S, White SR, Townsend A, Mansfield KL, Viner R, et al. Willingness of children and adolescents to have a COVID-19 vaccination: Results of a large whole schools survey in England. EClinicalMedicine 2021; 40: 101144.
  • 42. Morgans HA, Schuster JE, Warady BA. Pediatric Vaccine Hesitancy and COVID-19. Am J Kidney Dis 2023; 81(1): 13-14.
  • 43. Yılmaz M, Sahin MK. Parents' willingness and attitudes concerning the COVID-19 vaccine: A cross-sectional study. Int J Clin Pract 2021; 75(9): e14364.