A Code-to-Code Comparison for Floating Offshore Wind Turbine Simulation in Realistic Environmental Conditions: Quantifying the Impact of Modeling Fidelity on Different Substructure Concepts
Creators
- 1. Department of Industrial Engineering, University of Florence
- 2. Seapower scrl
- 3. Hermann Föttinger Institute, Technical University of Berlin
- 4. Saipem S.A
Description
Consensus is arising on considering floating offshore wind as the most promising technologies to increase renewable energy generation offshore. While evolving fast from a technological point of view, Floating Offshore Wind Turbines (FOWTs) are challenging, as their performance and loads are governed by complex dynamics that are a result of the coupled influence of wind, waves, and currents on the structures. Many open challenges are therefore still in place, especially from a modeling perspective. This study contributes to the understanding of the impact of modeling differences on FOWT loads by comparing three FOWT simulation codes, QBlade-Ocean, OpenFAST, and DeepLines Wind® and three substructure designs, a semi submersible, a spar-buoy, and the two-part concept Hexafloat in realistic environmental conditions. This extensive comparison represents one of the main outcomes of the H2020 project FLOATECH. In accordance with international standards for FOWT certification, multiple design situations are compared, including operation in normal power production and parked conditions. Results show that the compared codes agree well in the prediction of the system dynamics, regardless of the fidelity of the underlying modeling theories. Some differences between the codes emerged however in the analysis of fatigue loads, where, contrary to extreme loads, specific trends can be noted. With respect to QBlade-Ocean, OpenFAST was found to overestimate lifetime damage equivalent loads up to 14%. DeepLines Wind®, on the other hand, underestimated lifetime fatigue loads by up to 13.5%. Regardless of the model and FOWT design however, differences in fatigue loads are larger for tower base loads than for blade root loads, due to the larger influence substructure dynamics have on these loads.
Files
wes-2023-107.pdf
Files
(6.2 MB)
Name | Size | Download all |
---|---|---|
md5:b0ca30b43a17389227d7be2f1afef7cb
|
6.2 MB | Preview Download |