Published October 20, 2023 | Version v1
Journal article Open

Calculation and experimental studies for the spent nuclear fuel shipping cask sealing assembly

  • 1. Sosny R&D Company, Dimitrovgrad, Russia

Description

One of the safety requirements regarding the shipping cask for spent nuclear fuel is that its leak-tightness should be maintained by preserving the cask body structural integrity and the sealing system tightness under normal and accident transportation conditions. The cask under design has a cylindrical process penetration (port) in its bottomб which is sealed using a plug with a radial seal composed of two rubber O-rings. The cask sealing assembly design was justified by the ANSYS LS-DYNA code calculation results. In particular, the strains of the cask components were calculated when dropped from a height of 1 m with the sealing assembly hitting a vertical bar. The cask was concluded to be leak-tight or leaky based on the strain nature and amount. To verify the adequacy of the results, computer-aided and realistic simulations were undertaken with a 1/2.5 scale mockup cask dropped on a bar from a height of 1 m. The computational and experimental results show a good agreement in terms of the impact response accelerations (overloads) for the mockup cask and bar collision and in terms of the plastic strains for the key components of the mockup bottom port sealing assembly. This proves the adequacy of the numerical cask model that has been developed and the efficiency of the LS-DYNA simulations. The inner rubber O ring compression is reduced by the plastic strains in the cask's bottom port area, leading to a loose inner radial seal, as shown by the calculations. But the outer seal remains leak-tight, ensuring so the mockup cask tightness. The physical test results have also confirmed that the mockup cask remains leak-tight.

Files

NUCET_article_113520.pdf

Files (1.0 MB)

Name Size Download all
md5:b407b558060aa87a1a09761a3bd95c51
998.6 kB Preview Download
md5:a32a3e06bc7ef9c90ef6ef49fe0f535d
41.5 kB Preview Download

Additional details

References