Published December 7, 2023 | Version v1
Journal article Open

Exploring life-history traits of an endangered plant (Vicia biennis L.) to support the conservation of marginal populations

  • 1. Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Budapest, Hungary
  • 2. Eötvös Loránd University, Budapest, Hungary
  • 3. Bio Garancia Kft, Budapest, Hungary
  • 4. 'Lendület' Seed Ecology Research Group, Institute of Ecology and Botany, HUN-REN Centre for Ecological Research, Vácrátót, Hungary
  • 5. Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary|Hungarian Research Institute of Organic Agriculture, Budapest, Hungary

Description

We aimed to investigate the reproduction-related traits of Vicia biennis L., an endangered and poorly known wetland species in its western marginal populations (in Hungary), and discuss the conservational and ecological implications. We measured the mass, viability, and physical dormancy of half-year-old seeds in five in-situ collected seed lots, while potential seed longevity (i.e., seed bank type) was estimated from repeatedly germinating subsamples from four ex-situ collected seed lots for 3–8 years. Plant survival, flowering, and seed production were studied in different light-, irrigation-, and competition conditions in a botanical garden experiment. We found that 1) half-year-old seeds have a high germination capacity (78–100%), 2) and high level of physical dormancy (72–100%) in all examined Hungarian populations, and 3) the seeds can preserve their germination capacity for more than five years, although their viability sharply decreases, probably falling below 10% within ten years, when they are stored at room temperature. The results of the botanical garden experiment suggested that 1) the species is annual, not biennial; 2) it shows strong sensitivity to precipitation and low competitiveness for water; and 3) it can produce hundreds of seeds even in suboptimal (dry or shady) conditions. Although the species was found to be well-adapted to a temporally heterogeneous environment, its future vulnerability can increase depending on the duration of dry seasons. Further investigation of genetic diversity and soil seed bank is needed to estimate the actual vulnerability of the species while strengthening the populations through seed sowing, and additional vegetation control in the habitats is suggested.

Files

NC_article_105606.pdf

Files (2.1 MB)

Name Size Download all
md5:e46d3e49bff79765a8b5342b8ca96697
2.1 MB Preview Download

System files (264.1 kB)

Name Size Download all
md5:08545678af4b2ee476bebeec68dddcde
264.1 kB Download

Linked records

Additional details

References

  • Anon (2020) Royal Botanic Gardens Kew. Seed Information Database (SID).
  • Bah T (2010) Inkscape - Guide to a vector drawing program. 3rd edn. Ann Arbor, Michigan, 38 pp. http://tavmjong.free.fr/INKSCAPE/
  • Bartha D, Bán M, Schmidt D, Tiborcz V (2023) Vascular plants of Hungary online database. Department of Botany and Nature Conservation, Faculty of Forestry, Sopron University. http://floraatlasz.uni-sopron.hu
  • Baskin CC, Baskin JM (1998) Seeds: ecology, biogeography, and, evolution of dormancy and germination. Academic Press, San Diego, California, USA, 666 pp.
  • Baskin JM, Baskin CC (2004) A classification system for seed dormancy. Seed Science Research 14(1): 1–16. https://doi.org/10.1079/SSR2003150
  • Bekker RM, Bakker JP, Grandin U, Kalamees R, Milberg P, Poschlod P, Thompson K, Willems JH (1998) Seed size, shape and vertical distribution in the soil: Indicators of seed longevity. Functional Ecology 12(5): 834–842. https://doi.org/10.1046/j.1365-2435.1998.00252.x
  • Bekker RM, Bakker JP, Ozinga WA, Thompson K (2003) Seed traits: Essential for understanding seed longevity. Aspects of Applied Biology 69: 1–9.
  • Borhidi A (1995) Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian Flora. Acta Botanica Hungarica 39: 97–181.
  • Botta-Dukát Z, Bartha D, Dancza I, Lukács BA, Pinke G (2023) Adaptation of life form categorisation of Ellenberg and Mueller-Dombois to the Hungarian Flora. Acta Botanica Hungarica 65(1–2): 1–34. https://doi.org/10.1556/034.65.2023.1-2.1
  • Bouzat JL (2010) Conservation genetics of population bottlenecks: The role of chance, selection, and history. Conservation Genetics 11(2): 463–478. https://doi.org/10.1007/s10592-010-0049-0
  • Brownrigg R, Minka PT, Deckmyn A (2018) maps: Draw Geographical Maps. https://cran.r-project.org/package=maps
  • Childs DZ, Metcalf CJE, Rees M (2010) Evolutionary bet-hedging in the real world: Empirical evidence and challenges revealed by plants. Proceedings of the Royal Society B, Biological Sciences 277(1697): 3055–3064. https://doi.org/10.1098/rspb.2010.0707
  • Cohen D (1966) Optimizing reproduction in a randomly varying environment. Journal of Theoretical Biology 12(1): 119–129. https://doi.org/10.1016/0022-5193(66)90188-3
  • Cresswell JE, Osborne JL, Goulson D (2000) An economic model of the limits to foraging range in central place foragers with numerical solutions for bumblebees. Ecological Entomology 25(3): 249–255. https://doi.org/10.1046/j.1365-2311.2000.00264.x
  • Cseresnyés-Bózsing E (2010) A hólyagos csüdfű (Astragalus cicer L.) magprodukciójának és csírázóképességének vizsgálata. Botanikai Közlemények 97: 49–57.
  • Csontos P (2001) A természetes magbank kutatásának módszerei. Scientia, Budapest, 155 pp.
  • Csontos P, Kalapos T, Tamás J (2016) Comparison of seed longevity for thirty forest, grassland and weed species of the central European flora: Results of a seed burial experiment. Polish Journal of Ecology 64(3): 313–326. https://doi.org/10.3161/15052249PJE2016.64.3.002
  • Debeaujon I, Lepiniec L, Pourcel L, Routaboul J-M (2007) Seed coat development and dormancy. In: Bradford KJ, Nonogaki H (Eds) Annual Plant Reviews - Seed dormancy and germination. Blackwell Publishing, 25–41. https://doi.org/10.1002/9780470988848.ch2
  • Dee LE, Cowles J, Isbell F, Pau S, Gaines SD, Reich PB (2019) When Do Ecosystem Services Depend on Rare Species? Trends in Ecology & Evolution 34(8): 746–758. https://doi.org/10.1016/j.tree.2019.03.010
  • Endrédi A (2010) A kunsági bükköny (Vicia biennis L.) ex-situ szaporítása. BSc Thesis, Szent István University, Gödöllő, Hungary.
  • Endrédi A (2012) Védett növények ex-situ védelme. MSc Thesis, Szent István University, Gödöllő, Hungary.
  • Endrédi A, Nagy JG (2012) Adatok a fokozottan védett kunsági bükköny (Vicia biennis L.) élőhely-preferenciájáról. [Data about the habitat preferences of Vicia biennis L.]. Kitaibelia 17: 21. http://real-j.mtak.hu/16313/1/2012_17_1.pdf
  • Enquist BJ, Feng X, Boyle B, Maitner B, Newman EA, Jørgensen PM, Roehrdanz PR, Thiers BM, Burger JR, Corlett RT, Couvreur TLP, Dauby G, Donoghue JC, Foden W, Lovett JC, Marquet PA, Merow C, Midgley G, Morueta-Holme N, Neves DM, Oliveira-Filho AT, Kraft NJB, Park DS, Peet RK, Pillet M, Serra-Diaz JM, Sandel B, Schildhauer M, Šímová I, Violle C, Wieringa JJ, Wiser SK, Hannah L, Svenning JC, McGill BJ (2019) The commonness of rarity: Global and future distribution of rarity across land plants. Science Advances 5(11): 1–14. https://doi.org/10.1126/sciadv.aaz0414
  • ENSCONET (2009) Seed Collecting Manual for Wild Species, 32 pp.
  • Ércz D (2018) A kunsági bükköny védelme és ex-situ szaporítása. MSc Thesis, Szent István University, Gödöllő, Hungary.
  • Farkas S [Ed.] (1999) Magyarország védett növényei. Mezőgazda Kiadó, Budapest, Magyarország, 416 pp.
  • Godefroid S, Piazza C, Rossi G, Buord S, Stevens AD, Aguraiuja R, Cowell C, Weekley CW, Vogg G, Iriondo JM, Johnson I, Dixon B, Gordon D, Magnanon S, Valentin B, Bjureke K, Koopman R, Vicens M, Virevaire M, Vanderborght T (2011) How successful are plant species reintroductions? Biological Conservation 144(2): 672–682. https://doi.org/10.1016/j.biocon.2010.10.003
  • Grime JP (1998) Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. Journal of Ecology 86(6): 902–910. https://doi.org/10.1046/j.1365-2745.1998.00306.x
  • Gulyás G (2013) A kunsági bükköny (Vicia biennis L.) előfordulása Püspökladány mellett. Kitaibelia 18: 178–186.
  • Harel D, Holzapfel C, Sternberg M (2011) Seed mass and dormancy of annual plant populations and communities decreases with aridity and rainfall predictability. Basic and Applied Ecology 12(8): 674–684. https://doi.org/10.1016/j.baae.2011.09.003
  • Házi J, Lesku B (2006) A nemzeti park igazgatóságok által ex-situ védelemre javasolt növényfajok listája. Debrecen.
  • Hodkinson DJ, Askew AP, Thompson K, Hodgson JG, Bakker JP, Bekker RM (1998) Ecological correlates of seed size in the British flora. Functional Ecology 12(5): 762–766. https://doi.org/10.1046/j.1365-2435.1998.00256.x
  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometrical Journal. Biometrische Zeitschrift 50(3): 346–363. https://doi.org/10.1002/bimj.200810425
  • Jain M, Flynn DFB, Prager CM, Hart GM, DeVan CM, Ahrestani FS, Palmer MI, Bunker DE, Knops JMH, Jouseau CF, Naeem S (2014) The importance of rare species: A trait-based assessment of rare species contributions to functional diversity and possible ecosystem function in tall-grass prairies. Ecology and Evolution 4(1): 104–112. https://doi.org/10.1002/ece3.915
  • Jaureguiberry P, Titeux N, Wiemers M, Bowler DE, Coscieme L, Golden AS, Guerra CA, Jacob U, Takahashi Y, Settele J, Díaz S, Molnár Z, Purvis A (2022) The direct drivers of recent global anthropogenic biodiversity loss. Science Advances 8: 9982. https://doi.org/10.1126/sciadv.abm9982
  • Jayasuriya K, Wijetunga A (2013) Seed dormancy and storage behavior in tropical Fabaceae: A study of 100 species from Sri Lanka. Seed Science Research 23(4): 1–13. https://doi.org/10.1017/S0960258513000214
  • Jiménez-Alfaro B, Silveira FAO, Fidelis A, Poschlod P, Commander LE (2016) Seed germination traits can contribute better to plant community ecology. Journal of Vegetation Science 27: 637–645. https://doi.org/10.1111/jvs.12375
  • Kassambara A (2019) ggpubr: 'ggplot2' Based Publication Ready Plots. https://cran.r-project.org/package=ggpubr
  • Kattge J, Díaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, Garnier E, Westoby M, Reich PB, Wright IJ, Cornelissen JHC, Violle C, Harrison SP, Van Bodegom PM, Reichstein M, Enquist BJ, Soudzilovskaia NA, Ackerly DD, Anand M, Atkin O, Bahn M, Baker TR, Baldocchi D, Bekker R, Blanco CC, Blonder B, Bond WJ, Bradstock R, Bunker DE, Casanoves F, Cavender-Bares J, Chambers JQ, Chapin FS III, Chave J, Coomes D, Cornwell WK, Craine JM, Dobrin BH, Duarte L, Durka W, Elser J, Esser G, Estiarte M, Fagan WF, Fang J, Fernández-Méndez F, Fidelis A, Finegan B, Flores O, Ford H, Frank D, Freschet GT, Fyllas NM, Gallagher RV, Green WA, Gutierrez AG, Hickler T, Higgins SI, Hodgson JG, Jalili A, Jansen S, Joly CA, Kerkhoff AJ, Kirkup D, Kitajima K, Kleyer M, Klotz S, Knops JMH, Kramer K, Kühn I, Kurokawa H, Laughlin D, Lee TD, Leishman M, Lens F, Lenz T, Lewis SL, Lloyd J, Llusià J, Louault F, Ma S, Mahecha MD, Manning P, Massad T, Medlyn BE, Messier J, Moles AT, Müller SC, Nadrowski K, Naeem S, Niinemets Ü, Nöllert S, Nüske A, Ogaya R, Oleksyn J, Onipchenko VG, Onoda Y, Ordoñez J, Overbeck G, Ozinga WA, Patiño S, Paula S, Pausas JG, Peñuelas J, Phillips OL, Pillar V, Poorter H, Poorter L, Poschlod P, Prinzing A, Proulx R, Rammig A, Reinsch S, Reu B, Sack L, Salgado-Negret B, Sardans J, Shiodera S, Shipley B, Siefert A, Sosinski E, Soussana JF, Swaine E, Swenson N, Thompson K, Thornton P, Waldram M, Weiher E, White M, White S, Wright SJ, Yguel B, Zaehle S, Zanne AE, Wirth C (2011) TRY - a global database of plant traits. Global Change Biology 17(9): 2905–2935. https://doi.org/10.1111/j.1365-2486.2011.02451.x
  • Kattge J, Bönisch G, Díaz S, Lavorel S, Prentice IC, Leadley P, Tautenhahn S, Werner GDA, Aakala T, Abedi M, Acosta ATR, Adamidis GC, Adamson K, Aiba M, Albert CH, Alcántara JM, Alcázar C C, Aleixo I, Ali H, Amiaud B, Ammer C, Amoroso MM, Anand M, Anderson C, Anten N, Antos J, Apgaua DMG, Ashman T-L, Asmara DH, Asner GP, Aspinwall M, Atkin O, Aubin I, Baastrup-Spohr L, Bahalkeh K, Bahn M, Baker T, Baker WJ, Bakker JP, Baldocchi D, Baltzer J, Banerjee A, Baranger A, Barlow J, Barneche DR, Baruch Z, Bastianelli D, Battles J, Bauerle W, Bauters M, Bazzato E, Beckmann M, Beeckman H, Beierkuhnlein C, Bekker R, Belfry G, Belluau M, Beloiu M, Benavides R, Benomar L, Berdugo-Lattke ML, Berenguer E, Bergamin R, Bergmann J, Bergmann Carlucci M, Berner L, Bernhardt-Römermann M, Bigler C, Bjorkman AD, Blackman C, Blanco C, Blonder B, Blumenthal D, Bocanegra-González KT, Boeckx P, Bohlman S, Böhning-Gaese K, Boisvert-Marsh L, Bond W, Bond-Lamberty B, Boom A, Boonman CCF, Bordin K, Boughton EH, Boukili V, Bowman DMJS, Bravo S, Brendel MR, Broadley MR, Brown KA, Bruelheide H, Brumnich F, Bruun HH, Bruy D, Buchanan SW, Bucher SF, Buchmann N, Buitenwerf R, Bunker DE, Bürger J, Burrascano S, Burslem DFRP, Butterfield BJ, Byun C, Marques M, Scalon MC, Caccianiga M, Cadotte M, Cailleret M, Camac J, Camarero JJ, Campany C, Campetella G, Campos JA, Cano-Arboleda L, Canullo R, Carbognani M, Carvalho F, Casanoves F, Castagneyrol B, Catford JA, Cavender-Bares J, Cerabolini BEL, Cervellini M, Chacón-Madrigal E, Chapin K, Chapin FS, Chelli S, Chen S-C, Chen A, Cherubini P, Chianucci F, Choat B, Chung K-S, Chytrý M, Ciccarelli D, Coll L, Collins CG, Conti L, Coomes D, Cornelissen JHC, Cornwell WK, Corona P, Coyea M, Craine J, Craven D, Cromsigt JPGM, Csecserits A, Cufar K, Cuntz M, da Silva AC, Dahlin KM, Dainese M, Dalke I, Dalle Fratte M, Dang-Le AT, Danihelka J, Dannoura M, Dawson S, de Beer AJ, De Frutos A, De Long JR, Dechant B, Delagrange S, Delpierre N, Derroire G, Dias AS, Diaz-Toribio MH, Dimitrakopoulos PG, Dobrowolski M, Doktor D, Dřevojan P, Dong N, Dransfield J, Dressler S, Duarte L, Ducouret E, Dullinger S, Durka W, Duursma R, Dymova O, E-Vojtkó A, Eckstein RL, Ejtehadi H, Elser J, Emilio T, Engemann K, Erfanian MB, Erfmeier A, Esquivel-Muelbert A, Esser G, Estiarte M, Domingues TF, Fagan WF, Fagúndez J, Falster DS, Fan Y, Fang J, Farris E, Fazlioglu F, Feng Y, Fernandez-Mendez F, Ferrara C, Ferreira J, Fidelis A, Finegan B, Firn J, Flowers TJ, Flynn DFB, Fontana V, Forey E, Forgiarini C, François L, Frangipani M, Frank D, Frenette-Dussault C, Freschet GT, Fry EL, Fyllas NM, Mazzochini GG, Gachet S, Gallagher R, Ganade G, Ganga F, García-Palacios P, Gargaglione V, Garnier E, Garrido JL, de Gasper AL, Gea-Izquierdo G, Gibson D, Gillison AN, Giroldo A, Glasenhardt M-C, Gleason S, Gliesch M, Goldberg E, Göldel B, Gonzalez-Akre E, Gonzalez-Andujar JL, González-Melo A, González-Robles A, Graae BJ, Granda E, Graves S, Green WA, Gregor T, Gross N, Guerin GR, Günther A, Gutiérrez AG, Haddock L, Haines A, Hall J, Hambuckers A, Han W, Harrison SP, Hattingh W, Hawes JE, He T, He P, Heberling JM, Helm A, Hempel S, Hentschel J, Hérault B, Hereş A-M, Herz K, Heuertz M, Hickler T, Hietz P, Higuchi P, Hipp AL, Hirons A, Hock M, Hogan JA, Holl K, Honnay O, Hornstein D, Hou E, Hough-Snee N, Hovstad KA, Ichie T, Igić B, Illa E, Isaac M, Ishihara M, Ivanov L, Ivanova L, Iversen CM, Izquierdo J, Jackson RB, Jackson B, Jactel H, Jagodzinski AM, Jandt U, Jansen S, Jenkins T, Jentsch A, Jespersen JRP, Jiang G-F, Johansen JL, Johnson D, Jokela EJ, Joly CA, Jordan GJ, Joseph GS, Junaedi D, Junker RR, Justes E, Kabzems R, Kane J, Kaplan Z, Kattenborn T, Kavelenova L, Kearsley E, Kempel A, Kenzo T, Kerkhoff A, Khalil MI, Kinlock NL, Kissling WD, Kitajima K, Kitzberger T, Kjøller R, Klein T, Kleyer M, Klimešová J, Klipel J, Kloeppel B, Klotz S, Knops JMH, Kohyama T, Koike F, Kollmann J, Komac B, Komatsu K, König C, Kraft NJB, Kramer K, Kreft H, Kühn I, Kumarathunge D, Kuppler J, Kurokawa H, Kurosawa Y, Kuyah S, Laclau J-P, Lafleur B, Lallai E, Lamb E, Lamprecht A, Larkin DJ, Laughlin D, Le Bagousse-Pinguet Y, le Maire G, le Roux PC, le Roux E, Lee T, Lens F, Lewis SL, Lhotsky B, Li Y, Li X, Lichstein JW, Liebergesell M, Lim JY, Lin Y-S, Linares JC, Liu C, Liu D, Liu U, Livingstone S, Llusià J, Lohbeck M, López-García Á, Lopez-Gonzalez G, Lososová Z, Louault F, Lukács BA, Lukeš P, Luo Y, Lussu M, Ma S, Maciel Rabelo Pereira C, Mack M, Maire V, Mäkelä A, Mäkinen H, Malhado ACM, Mallik A, Manning P, Manzoni S, Marchetti Z, Marchino L, Marcilio-Silva V, Marcon E, Marignani M, Markesteijn L, Martin A, Martínez-Garza C, Martínez-Vilalta J, Mašková T, Mason K, Mason N, Massad TJ, Masse J, Mayrose I, McCarthy J, McCormack ML, McCulloh K, McFadden IR, McGill BJ, McPartland MY, Medeiros JS, Medlyn B, Meerts P, Mehrabi Z, Meir P, Melo FPL, Mencuccini M, Meredieu C, Messier J, Mészáros I, Metsaranta J, Michaletz ST, Michelaki C, Migalina S, Milla R, Miller JED, Minden V, Ming R, Mokany K, Moles AT, Molnár A, Molofsky J, Molz M, Montgomery RA, Monty A, Moravcová L, Moreno-Martínez A, Moretti M, Mori AS, Mori S, Morris D, Morrison J, Mucina L, Mueller S, Muir CD, Müller SC, Munoz F, Myers-Smith IH, Myster RW, Nagano M, Naidu S, Narayanan A, Natesan B, Negoita L, Nelson AS, Neuschulz EL, Ni J, Niedrist G, Nieto J, Niinemets Ü, Nolan R, Nottebrock H, Nouvellon Y, Novakovskiy A, Nystuen KO, O'Grady A, O'Hara K, O'Reilly-Nugent A, Oakley S, Oberhuber W, Ohtsuka T, Oliveira R, Öllerer K, Olson ME, Onipchenko V, Onoda Y, Onstein RE, Ordonez JC, Osada N, Ostonen I, Ottaviani G, Otto S, Overbeck GE, Ozinga WA, Pahl AT, Paine CET, Pakeman RJ, Papageorgiou AC, Parfionova E, Pärtel M, Patacca M, Paula S, Paule J, Pauli H, Pausas JG, Peco B, Penuelas J, Perea A, Peri PL, Petisco-Souza AC, Petraglia A, Petritan AM, Phillips OL, Pierce S, Pillar VD, Pisek J, Pomogaybin A, Poorter H, Portsmuth A, Poschlod P, Potvin C, Pounds D, Powell AS, Power SA, Prinzing A, Puglielli G, Pyšek P, Raevel V, Rammig A, Ransijn J, Ray CA, Reich PB, Reichstein M, Reid DEB, Réjou-Méchain M, de Dios VR, Ribeiro S, Richardson S, Riibak K, Rillig MC, Riviera F, Robert EMR, Roberts S, Robroek B, Roddy A, Rodrigues AV, Rogers A, Rollinson E, Rolo V, Römermann C, Ronzhina D, Roscher C, Rosell JA, Rosenfield MF, Rossi C, Roy DB, Royer-Tardif S, Rüger N, Ruiz-Peinado R, Rumpf SB, Rusch GM, Ryo M, Sack L, Saldaña A, Salgado-Negret B, Salguero-Gomez R, Santa-Regina I, Santacruz-García AC, Santos J, Sardans J, Schamp B, Scherer-Lorenzen M, Schleuning M, Schmid B, Schmidt M, Schmitt S, Schneider JV, Schowanek SD, Schrader J, Schrodt F, Schuldt B, Schurr F, Selaya Garvizu G, Semchenko M, Seymour C, Sfair JC, Sharpe JM, Sheppard CS, Sheremetiev S, Shiodera S, Shipley B, Shovon TA, Siebenkäs A, Sierra C, Silva V, Silva M, Sitzia T, Sjöman H, Slot M, Smith NG, Sodhi D, Soltis P, Soltis D, Somers B, Sonnier G, Sørensen MV, Sosinski Jr EE, Soudzilovskaia NA, Souza AF, Spasojevic M, Sperandii MG, Stan AB, Stegen J, Steinbauer K, Stephan JG, Sterck F, Stojanovic DB, Strydom T, Suarez ML, Svenning J-C, Svitková I, Svitok M, Svoboda M, Swaine E, Swenson N, Tabarelli M, Takagi K, Tappeiner U, Tarifa R, Tauugourdeau S, Tavsanoglu C, te Beest M, Tedersoo L, Thiffault N, Thom D, Thomas E, Thompson K, Thornton PE, Thuiller W, Tichý L, Tissue D, Tjoelker MG, Tng DYP, Tobias J, Török P, Tarin T, Torres-Ruiz JM, Tóthmérész B, Treurnicht M, Trivellone V, Trolliet F, Trotsiuk V, Tsakalos JL, Tsiripidis I, Tysklind N, Umehara T, Usoltsev V, Vadeboncoeur M, Vaezi J, Valladares F, Vamosi J, van Bodegom PM, van Breugel M, Van Cleemput E, van de Weg M, van der Merwe S, van der Plas F, van der Sande MT, van Kleunen M, Van Meerbeek K, Vanderwel M, Vanselow KA, Vårhammar A, Varone L, Vasquez Valderrama MY, Vassilev K, Vellend M, Veneklaas EJ, Verbeeck H, Verheyen K, Vibrans A, Vieira I, Villacís J, Violle C, Vivek P, Wagner K, Waldram M, Waldron A, Walker AP, Waller M, Walther G, Wang H, Wang F, Wang W, Watkins H, Watkins J, Weber U, Weedon JT, Wei L, Weigelt P, Weiher E, Wells AW, Wellstein C, Wenk E, Westoby M, Westwood A, White PJ, Whitten M, Williams M, Winkler DE, Winter K, Womack C, Wright IJ, Wright SJ, Wright J, Pinho BX, Ximenes F, Yamada T, Yamaji K, Yanai R, Yankov N, Yguel B, Zanini KJ, Zanne AE, Zelený D, Zhao Y-P, Zheng J, Zheng J, Ziemińska K, Zirbel CR, Zizka G, Zo-Bi IC, Zotz G, Wirth C (2020) TRY plant trait database – enhanced coverage and open access. Global Change Biology 26(1): 119–188. https://doi.org/10.1111/gcb.14904
  • Király G [Ed.] (2007) Vörös Lista- a magyarországi edényes flóra veszélyeztetett fajai [Red list of the vascular flora of Hungary]. Sopron, 73 pp.
  • Király G [Ed.] (2009) Új magyar fűvészkönyv. Magyarország hajtásos növényei. Határozókulcsok. [New Hungarian Herbal. The Vascular Plants of Hungary. Identification key.]. Aggteleki Nemzeti Park Igazgatóság, Jósvafő, 628 pp.
  • Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, Poschlod P, van Groenendael JM, Klimeš L, Klimešová J, Klotz S, Rusch GM, Hermy M, Adriaens D, Boedeltje G, Bossuyt B, Dannemann A, Endels P, Götzenberger L, Hodgson JG, Jackel A-K, Kühn I, Kunzmann D, Ozinga WA, Römermann C, Stadler M, Schlegelmilch J, Steendam HJ, Tackenberg O, Wilmann B, Cornelissen JHC, Eriksson O, Garnier E, Peco B (2008) The LEDA Traitbase: A database of life-history traits of the Northwest European flora. Journal of Ecology 96(6): 1266–1274. https://doi.org/10.1111/j.1365-2745.2008.01430.x
  • Lakatos M, Bihari Z, Hoffmann L, Izsák B, Kircsi A, Szentimrey T (2018) Observed climate change in Hungary 1901–2016 [in Hungarian]. OMSZ - Hungarian Meteorological Service Webpage. https://www.met.hu/eghajlat/eghajlatvaltozas/megfigyelt_valtozasok/Magyarorszag/
  • Leht M (2005) Cladistic and phenetic analyses of relationships in Vicia subgenus Cracca (Fabaceae) based on morphological data. Taxon 54(4): 1023–1032. https://doi.org/10.2307/25065486
  • Lesku B, Molnár A (2007) A Hortobágy növényritkaságai. Daru füzetek, Hortobágyi Nemzeti Park Igazgatóság, Debrecen.
  • Lyons KG, Schwartz MW (2001) Rare species loss alters ecosystem function - invasion resistance. Ecology Letters 4(4): 358–365. https://doi.org/10.1046/j.1461-0248.2001.00235.x
  • Lyons KG, Brigham CA, Traut BHH, Schwartz MW (2005) Rare species and ecosystem functioning. Conservation Biology 19: 1019–1024. https://doi.org/10.1111/j.1523-1739.2005.00106.x
  • Marini L, Bruun HH, Heikkinen RK, Helm A, Honnay O, Krauss J, Kühn I, Lindborg R, Pärtel M, Bommarco R (2012) Traits related to species persistence and dispersal explain changes in plant communities subjected to habitat loss. Diversity & Distributions 18(9): 898–908. https://doi.org/10.1111/j.1472-4642.2012.00893.x
  • Metz J, Liancourt P, Kigel J, Harel D, Sternberg M, Tielbörger K (2010) Plant survival in relation to seed size along environmental gradients: A long-term study from semi-arid and Mediterranean annual plant communities. Journal of Ecology 98(3): 697–704. https://doi.org/10.1111/j.1365-2745.2010.01652.x
  • Molnár VA, Molnár A, Vidéki R, Pfeiffer N, Gulyás G (2000) Néhány adat Magyarország flórájának ismeretéhez. Kitaibelia 5: 297–303.
  • Mouillot D, Bellwood DR, Baraloto C, Chave J, Galzin R, Harmelin-Vivien M, Kulbicki M, Lavergne S, Lavorel S, Mouquet N, Paine CET, Renaud J, Thuiller W (2013) Rare Species Support Vulnerable Functions in High-Diversity Ecosystems. PLoS Biology 11: e1001569. https://doi.org/10.1371/journal.pbio.1001569
  • Newton R, Hay F, Probert R (2014) Royal Botanic Gardens, Kew Protocol for comparative seed longevity testing. https://brahmsonline.kew.org/Content/Projects/msbp/resources/Training/01-Comparative-longevity.pdf
  • Oleas NH, Peterson CL, Thompson J, Richardson ML, Reynaldo Y, Von Wettberg EJB (2018) Genetic and habitat variation among populations of the critically imperiled Vicia ocalensis (Fabaceae) in the Ocala National Forest, USA. The Journal of the Torrey Botanical Society 145(3): 202–211. https://doi.org/10.3159/TORREY-D-16-00064.1
  • Pake E, Venable DL (1996) Seed Banks in Desert Annuals : Implications for Persistence and Coexistence in Variable Environments. Ecology 77(5): 1427–1435. https://doi.org/10.2307/2265540
  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918): 37–42. https://doi.org/10.1038/nature01286
  • Pence VC, Meyer A, Linsky J, Gratzfeld J, Pritchard HW, Westwood M, Bruns EB (2022) Defining exceptional species—A conceptual framework to expand and advance ex situ conservation of plant diversity beyond conventional seed banking. Biological Conservation 266: 109440. https://doi.org/10.1016/j.biocon.2021.109440
  • Philippi T (1993) Bet-hedging germination of desert annuals: Variation among populations and maternal effects in Lepidium lasiocarpum. American Naturalist 142(3): 488–507. https://doi.org/10.1086/285551
  • Pimm SL, Jones HL, Diamond J (1988) On the Risk of Extinction. American Naturalist 132(6): 757–785. https://doi.org/10.1086/284889
  • POWO (2023) Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet. http://www.plantsoftheworldonline.org/
  • Probert RJ, Daws MI, Hay FR (2009) Ecological correlates of ex situ seed longevity: A comparative study on 195 species. Annals of Botany 104(1): 57–69. https://doi.org/10.1093/aob/mcp082
  • R Core Team (2019) R: A Language and Environment for Statistical Computing. https://www.r-project.org/
  • Renzi JP, Chantre GR, Cantamutto MA (2014) Development of a thermal-time model for combinational dormancy release of hairy vetch (Vicia villosa ssp. villosa). Crop & Pasture Science 65(5): 470. https://doi.org/10.1071/CP13430
  • Rubio de Casas R, Willis CG, Pearse WD, Baskin CC, Baskin JM, Cavender‐Bares J (2017) Global biogeography of seed dormancy is determined by seasonality and seed size: A case study in the legumes. The New Phytologist 214(4): 1527–1536. https://doi.org/10.1111/nph.14498
  • Saatkamp A, Cochrane A, Commander L, Guja LK, Jimenez-Alfaro B, Larson J, Nicotra A, Poschlod P, Silveira FAO, Cross AT, Dalziell EL, Dickie J, Erickson TE, Fidelis A, Fuchs A, Golos PJ, Hope M, Lewandrowski W, Merritt DJ, Miller BP, Miller RG, Offord CA, Ooi MKJ, Satyanti A, Sommerville KD, Tangney R, Tomlinson S, Turner S, Walck JL (2019) A research agenda for seed-trait functional ecology. The New Phytologist 221(4): 1764–1775. https://doi.org/10.1111/nph.15502
  • Sala OE, Chapin FS, Armesto JJ, Berlow EL, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global Biodiversity Scenarios for the Year 2100. Source: Science, New Series 287: 1770–1774. https://doi.org/10.1126/science.287.5459.1770
  • Salisbury EJ (1942) The reproductive capacity of plants. Studies in quantitative biology. G. Bell & Sons, London, UK, 244 pp.
  • Säterberg T, Jonsson T, Yearsley J, Berg S, Ebenman B (2019) A potential role for rare species in ecosystem dynamics. Scientific Reports 9: 11107. https://doi.org/10.1038/s41598-019-47541-6
  • Schindler S, O'Neill FH, Biró M, Damm C, Gasso V, Kanka R, van der Sluis T, Krug A, Lauwaars SG, Sebesvari Z, Pusch M, Baranovsky B, Ehlert T, Neukirchen B, Martin JR, Euller K, Mauerhofer V, Wrbka T (2016) Multifunctional floodplain management and biodiversity effects: A knowledge synthesis for six European countries. Biodiversity and Conservation 25(7): 1349–1382. https://doi.org/10.1007/s10531-016-1129-3
  • Somlyay L, Bauer N (2013) Adatok a Vicia biennis L. elterjedéséhez a Pannonicum-ban. Kitaibelia 18: 125–128.
  • Sonkoly J, Deák B, Valkó O, Molnár VA, Tóthmérész B, Török P (2017) Do large-seeded herbs have a small range size? The seed mass–distribution range trade-off hypothesis. Ecology and Evolution 7(24): 11204–11212. https://doi.org/10.1002/ece3.3568
  • Sonkoly J, Tóth E, Balogh N, Balogh L, Bartha D, Bata K, Bátori Z, Békefi N, Botta-Dukát Z, Bölöni J, Csecserits A, Csiky J, Csontos P, Dancza I, Deák B, Dobolyi ZK E-Vojtkó A, Gyulai F, Hábenczyus AA, Henn T, Horváth F, Höhn M, Jakab G, Kelemen A, Király G, Kis S, Kovacsics-Vári G, Kun A, Lehoczky É, Lengyel A, Lhotsky B, Löki V, Lukács BA, Matus G, McIntosh-Buday A, Mesterházy A, Miglécz T, Molnár V. A, Molnár Z, Morschhauser T, Papp L, Pósa P, Rédei T, Schmidt D, Szmorad F, Takács A, Tamás J, Tiborcz V, Tölgyesi C, Tóth K, Tóthmérész B, Valkó O, Virók V, Wirth T, Török P (2022) PADAPT 1.0–the Pannonian Database of Plant Traits (preprint). https://doi.org/10.1101/2022.12.05.519136
  • Soó R (1980) A magyar flóra és vegetáció rendszertani-növényföldrajzi kézikönyve I-VI. Akademiai Kiado Rt., Budapest.
  • Sőth Á (2017) Két hazai védett növény csírázási tulajdonságai és ex-situ védelmének helyzete. BSc Thesis, Állatorvostudományi Egyetem, Budapest, Hungary.
  • Stohlgren TJ, Bull KA, Otsuki Y, Villa CA, Lee M (1998) Riparian zones as havens for exotic plant species in the central grasslands. Plant Ecology 138(1): 113–125. https://doi.org/10.1023/A:1009764909413
  • Tapiquén CEP (2015) Hydrography of Europe. Based on shapes from Enviromental Systems Research Institute (ESRI). Free Distribuition. Orogénesis Soluciones Geográficas. Porlamar, Venezuela.
  • Thompson K (1993) Seed persistence in soil. In: Henry GAF, Grime JP (Eds) Methods in comparative plant ecology. Springer, Dordrecht, 199–202.
  • Thompson K, Band SR, Hodgson JG (1993) Seed size and shape predict persistence in soil. Functional Ecology 7(2): 236. https://doi.org/10.2307/2389893
  • Thompson K, Bakker JP, Bekker RM, Hodgson JG (1998) Ecological correlates of seed persistence in soil in the north-west European flora. Journal of Ecology 86(1): 163–169. https://doi.org/10.1046/j.1365-2745.1998.00240.x
  • Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences of the United States of America 102(23): 8245–8250. https://doi.org/10.1073/pnas.0409902102
  • Thuiller W, Albert C, Araújo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgley GF, Paterson J, Schurr FM, Sykes MT, Zimmermann NE (2008) Predicting global change impacts on plant species' distributions: Future challenges. Perspectives in Plant Ecology, Evolution and Systematics 9(3-4): 137–152. https://doi.org/10.1016/j.ppees.2007.09.004
  • Van Assche JA, Vandelook FEA (2010) Combinational dormancy in winter annual Fabaceae. Seed Science Research 20(4): 237–242. https://doi.org/10.1017/S0960258510000218
  • Venable DL, Brown JS (1988) The selective interactions of dispersal, dormancy, and seed size as adaptations for reducing risk in variable environments. American Naturalist 131(3): 360–384. https://doi.org/10.1086/284795
  • Violle C, Jiang L (2009) Towards a trait-based quantification of species niche. Journal of Plant Ecology 2(2): 87–93. https://doi.org/10.1093/jpe/rtp007
  • Violle C, Navas M, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116(5): 882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x
  • Violle C, Reich PB, Pacala SW, Enquist BJ, Kattge J (2014) The emergence and promise of functional biogeography. Proceedings of the National Academy of Sciences of the United States of America 111(38): 13690–13696. https://doi.org/10.1073/pnas.1415442111
  • Volis S, Bohrer G (2013) Joint evolution of seed traits along an aridity gradient: Seed size and dormancy are not two substitutable evolutionary traits in temporally heterogeneous environment. The New Phytologist 197(2): 655–667. https://doi.org/10.1111/nph.12024
  • Westoby M (1981) How Diversified Seed Germination Behavior is Selected. American Naturalist 118(6): 882–885. https://doi.org/10.1086/283880
  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: Some leading dimensions of variation between species. Annual Review of Ecology and Systematics 33(1): 125–159. https://doi.org/10.1146/annurev.ecolsys.33.010802.150452
  • Zhang X, Mosjidis JA (1995) Breeding systems of several Vicia species. Crop Science 35(4): 1200–1202. https://doi.org/10.2135/cropsci1995.0011183X003500040049x