Published December 13, 2023
| Version v4
Dataset
Open
Online repository for Paper "GTE: A Framework for Learning Code AST Representation Efficiently and Effectively"
Creators
Description
The online repository for the under review IJCAI2024 paper "GTE: A Framework for Learning Code AST Representation Efficiently and Effectively"
GTE-main.zip contains the source code of GTE, please see README.md in GTE-main.zip for more guidance.
Appendix.pdf contains more details about the dataset and probing task design.
Files
Appendix.pdf
Files
(944.3 MB)
Name | Size | Download all |
---|---|---|
md5:fefd297d6df071cd32f71fcfcb761161
|
123.0 kB | Preview Download |
md5:b2f63ccb8c7217d0b9a49353d0c84e57
|
6.6 MB | Preview Download |
md5:0073a2f3c5a785a542dfabbfc0bdaf6b
|
154.2 MB | Preview Download |
md5:3fb57b0f142c217e2d99d2936a2ad2b5
|
330.8 MB | Preview Download |
md5:da3f0a3fb324d2563c1a5495ca1f3a9a
|
300.0 MB | Preview Download |
md5:3292c8a7d1d736272cf2647e5bba5b17
|
45.4 MB | Preview Download |
md5:5988b822a0b89ed517120bed53f7e159
|
107.1 MB | Preview Download |