Published December 12, 2023
| Version v1
Dataset
Open
Precision viticulture dataset for detailed vineyard mapping composed of geotagged smartphone ground images, phytosanitary status, UAV orthomosaics, 3D point clouds, and RTK GNSS data - Northern Spain, July 2022
Description
This dataset offers a rich multimodal collection of data from vineyards, designed to enhance agricultural research with a focus on vineyard management and disease monitoring. It includes geotagged smartphone ground images in ".7z" format for detailed plant-level analysis, a ".csv" file detailing plants' phytosanitary status for health assessment, UAV-derived 3D Point Clouds and orthomosaics in ".las" and ".tiff" formats for aerial landscape views, and RTK GNSS data in ".shp" format for precise plant geolocations.
This dataset can be combined with other datasets to enable a comprehensive view of the vineyards and improve its value:
- Ariza-Sentís, Mar, Sergio Vélez, and João Valente. ‘Dataset on UAV RGB Videos Acquired over a Vineyard Including Bunch Labels for Object Detection and Tracking’. Data in Brief 46 (February 2023): 108848. https://doi.org/10.1016/j.dib.2022.108848.
- Vélez, Sergio, Mar Ariza-Sentís, and João Valente. ‘VineLiDAR: High-Resolution UAV-LiDAR Vineyard Dataset Acquired over Two Years in Northern Spain.’ Data in Brief, October 2023, 109686. https://doi.org/10.1016/j.dib.2023.109686.
-
Vélez, Sergio, Mar Ariza-Sentís, and João Valente. ‘Dataset on Unmanned Aerial Vehicle Multispectral Images Acquired over a Vineyard Affected by Botrytis Cinerea in Northern Spain’. Data in Brief 46 (February 2023): 108876. https://doi.org/10.1016/j.dib.2022.108876.
Files
20220714_FLEXIGROBOTS_B7_30M0G_MS_PRO.tif
Files
(8.6 GB)
| Name | Size | Download all |
|---|---|---|
|
md5:13cec97cf9c19bbaa2436d290a3c3c1c
|
3.4 GB | Preview Download |
|
md5:972be25d4d0caf43ef0abdf9e3b98315
|
216.5 MB | Download |
|
md5:e9d08ac4c4c857a811faabcd51350bce
|
223.8 MB | Download |
|
md5:e210bffd346a6f5057811a0d0e7e5868
|
235.5 MB | Download |
|
md5:4418ec74476d63c9ee56d093b377f391
|
232.8 MB | Download |
|
md5:b4678a162c5ae1294497dd7b20b4769f
|
220.3 MB | Download |
|
md5:c9d0e0efb3093b0763e63bfec8ad39d5
|
1.5 GB | Preview Download |
|
md5:f8f7a1a30ef408d18d9cca8f0dfdbb52
|
127.3 MB | Download |
|
md5:41abbde90bda9166b760849e585c1660
|
131.4 MB | Download |
|
md5:036c81517c701c70c6695c6f717c6d50
|
134.3 MB | Download |
|
md5:f789d4aca0b1346234081a734274e9be
|
134.0 MB | Download |
|
md5:b5c77ff849c63e9b4f86316b35b24b36
|
124.8 MB | Download |
|
md5:f3f33215b99e9c56411d4bd43e34e310
|
27.6 kB | Preview Download |
|
md5:c06a319b7a1915f8d38127a87ab70919
|
452.9 MB | Download |
|
md5:a8fa79b33b4ab5cd335ccb3ff7a82606
|
1.5 GB | Download |
|
md5:ada3209607dd8e01a1e6bfa9fa6143c4
|
8.5 kB | Preview Download |
Additional details
Related works
- Is supplemented by
- Dataset: 10.1016/j.dib.2022.108876 (DOI)
- Dataset: 10.1016/j.dib.2022.108848 (DOI)
- Dataset: 10.1016/j.dib.2023.109686 (DOI)
- Dataset: 10.1016/j.eja.2022.126691 (DOI)
- Dataset: 10.1016/j.softx.2023.101542 (DOI)