Published December 8, 2023
| Version v1
Dataset
Open
SpectroFood dataset Broccoli
Creators
- Malounas, Ioannis (Data collector)1
- Kutluk, Sezer (Data manager)2
- Zude-Sasse, Manuela (Data collector)2
- Ming, Zhao (Data collector)3
- Vierbergen, Wout (Data collector)4
- Yang, Kai (Data manager)3
- Argyropoulos, Dimitrios (Data collector)3
- Ampe, Eva (Data collector)4
- Van Beek, Jonathan (Data collector)4
- Fountas, Spyros (Data collector)1
Description
This dataset contains hyperspectral data in the visible / shortwave near-infrared spectral (470 - 900 nm) domain for broccoli. The cubes were downsized to 80 % in OpenCV using bilinear interpolation (https://docs.opencv.org/4.8.0/da/d6e/tutorial_py_geometric_transformations.html).
The data set contains cubes of 250 samples, wavelength vector and sample labels in Matlab's mat format. In each mat file 10 sample readings are collected, however, labels in the files provide the sample number.
The data set is coupled with dry matter content references that are provided here: https://zenodo.org/records/8362947
Notes
Files
Files
(42.8 GB)
Name | Size | Download all |
---|---|---|
md5:87f7d4122f19317975ae434bfd133e86
|
1.8 GB | Download |
md5:3be4e3c6133c6bd8e2d8b56c022b4ea3
|
1.9 GB | Download |
md5:982bbc45cf6e66c48e44da27c7a0f4e6
|
1.6 GB | Download |
md5:ed0f30eb5a68e1d82cdb3a226287091e
|
1.6 GB | Download |
md5:f1c21f85dbc49a4dc50361cab00e6361
|
1.8 GB | Download |
md5:f77b185572aff5b0354df49fafeaeaad
|
1.6 GB | Download |
md5:714bb1084a30a40bcdcf3f5094de7d77
|
2.0 GB | Download |
md5:deb9dbf9585955926dbd24ec9dbd4be3
|
1.7 GB | Download |
md5:2c747525ca617b4610ca5d120a74c861
|
1.6 GB | Download |
md5:5f46d772745d223770c5967ffda51199
|
1.6 GB | Download |
md5:bde306bd56e6d571f55d330057dc4f8a
|
2.0 GB | Download |
md5:bd0eef5542358699a87e89c427264214
|
1.7 GB | Download |
md5:d6a39d04afffe932702f0d0db40051ba
|
2.0 GB | Download |
md5:4f6be1cbe5533b2de2cbfd172582d66f
|
1.8 GB | Download |
md5:6161da5dd2bad0e2a3b59632ae55c493
|
1.6 GB | Download |
md5:e72d4b36e693f1cce21a7c490b0901db
|
1.6 GB | Download |
md5:5c7d471cb504e51919eafd234e194657
|
1.5 GB | Download |
md5:90b0d110eed558d835b3fcfbea2a64a4
|
1.7 GB | Download |
md5:07ec063bc7ad081c51b02d60e7a41297
|
1.6 GB | Download |
md5:07c77297a6224ae5aad52fca353147ac
|
1.6 GB | Download |
md5:4eb18d6b78fac54b5adebfee32be8abf
|
2.0 GB | Download |
md5:ad764c8f8e558ed1d005decfeed1c4de
|
1.7 GB | Download |
md5:177fdcb60e5d1387212c58c21ab52401
|
1.7 GB | Download |
md5:12500a5e126bc66bed0045dec07beff4
|
1.6 GB | Download |
md5:1c5f93dd30e1e47fd83f614d5362a2a3
|
1.6 GB | Download |
Additional details
Related works
- Is published in
- Data paper: 10.1016/j.dib.2024.110040 (DOI)