Published November 27, 2023 | Version v1
Dataset Open

Data from: Bacteriophage infection and killing of intracellular Mycobacterium abscessus

  • 1. Colorado State University
  • 2. University of North Carolina
  • 3. Colorado State University System
  • 4. University of Pittsburgh

Description

Mycobacterium abscessus is a nontuberculous mycobacterium (NTM) that contributes to the decline and death of patients with lung diseases such as cystic fibrosis and other muco-obstructive airway diseases. M. abscessus is challenging to treat due to its extensive antibiotic resistance and ability to survive inside mammalian cells. An alternative to antibiotics is the therapeutic use of bacteriophages (phages). There are recent cases of phage therapy being used to treat M. abscessus infections in people under compassionate-use conditions. However, little is known about the ability of phages to kill bacteria, such as M. abscessus, that reside in an intracellular environment. Here, we used M. abscessus strains and phages from recent phage therapy cases to determine if phages can enter mammalian cells and if they can infect and kill intracellular M. abscessus. Using fluorescence microscopy, we demonstrate phage uptake by macrophages and lung epithelial cells, and we further demonstrate phage infection of intracellular M. abscessus with fluorescent reporter phages. Transmission electron microscopy was additionally used to image phage infection of intracellular M. abscessus. Together, these findings provide the first visualizations of phage-M. abscessus interactions in an intracellular environment. Finally, we show that phage treatment can significantly reduce the intracellular burden of M. abscessus in a manner that depends on both the specific phage and mammalian cell type involved. These results demonstrate the potential to use phage therapy to treat intracellular bacteria, specifically M. abscessus, while also highlighting the importance of prescreening phage therapy candidates for activity in an intracellular environment.

Notes

Funding provided by: National Institute of Allergy and Infectious Diseases
Crossref Funder Registry ID: https://ror.org/043z4tv69
Award Number: T32AI007151

Funding provided by: National Institute of Allergy and Infectious Diseases
Crossref Funder Registry ID: https://ror.org/043z4tv69
Award Number: R21 AI163677

Funding provided by: Cystic Fibrosis Foundation
Crossref Funder Registry ID: http://dx.doi.org/10.13039/100000897
Award Number: BRAUNS21P0

Funding provided by: National Institute of General Medical Sciences
Crossref Funder Registry ID: https://ror.org/04q48ey07
Award Number: GM131729

Funding provided by: Cystic Fibrosis Foundation
Crossref Funder Registry ID: http://dx.doi.org/10.13039/100000897
Award Number: WETZEL21F0

Funding provided by: Howard Hughes Medical Institute
Crossref Funder Registry ID: https://ror.org/006w34k90
Award Number: GT12053

Files

CSV-20231114T155212Z-001.zip

Files (6.4 kB)

Name Size Download all
md5:d5f1cc9a1b723b600c23b3f02c4d3fbc
5.0 kB Preview Download
md5:7cc768ab8def06e96a84e79be95bcf25
1.5 kB Preview Download