File uploads: We have fixed an issue which caused file uploads to fail. We apologise for the inconvenience it may have caused.

Published November 30, 2023 | Version CC-BY-NC-ND 4.0
Journal Open

Multi-Scale Feature Pyramid for Detection of Red Lesions in Fundus Images

  • 1. Department of Electrical Engineering, Jadavpur University, Kolkata (West Bengal), India.
  • 1. Department of Electrical Engineering, Jadavpur University, Kolkata (West Bengal), India.
  • 2. Department of Electrical Engineering, National Institute of Technology Durgapur, Durgapur (West Bengal), India.

Description

Abstract: Diabetic retinopathy (DR) is increasing rapidly around the world, but there is a shortage of experienced ophthalmologists. Therefore, computer-based diagnosis of the fundus images is essential to screening of referable DR. Automated detection of red lesions is very important for screening of DR. This paper deals with a novel method for automatic detection of red lesion. The main contribution is developing a deep learning based detection framework to handle severe class imbalance and imbalance in sizes of red lesions. The multi-scale features are extracted using the feature pyramid network. A pyramid of features is generated with strong semantics. The proposed network is end-to-end trainable in image level with several scales and works for a wide range of red lesions with acceptable performance. Sensitivity of the proposed method is 0.76 with six false-positive per image on test set of publicly available DIARECTDB1 database and outperforms state-of-the-art approaches. A potential benefit with deep learning based detection framework could be used in screening programs of referable DR.

Files

D79511112423.pdf

Files (494.0 kB)

Name Size Download all
md5:22d75765006f4288aed0fbc3dd77acea
494.0 kB Preview Download

Additional details

Identifiers

Dates

Accepted
2023-11-15
Manuscript received on 19 October 2023 | Revised Manuscript received on 06 November 2023 | Manuscript Accepted on 15 November 2023 | Manuscript published on 30 November 2023

References

  • Ting, D. S. W., Pasquale, L. R., Peng, L., Campbell, J. P., Lee, A. Y., Raman, R., Tan, G.S.W., Schmetterer, L., Keane, P.A. and Wong, T.Y. & Wong, T. Y. (2019). Artificial intelligence and deep learning in ophthalmology. British Journal of Ophthalmology, 103 (2), 167-175. https://doi.org/10.1136/bjophthalmol-2018-313173
  • Raman, R., Srinivasan, S., Virmani, S., Sivaprasad, S., Rao, C., & Rajalakshmi, R. (2019). Fundus photograph-based deep learning algorithms in detecting diabetic retinopathy. Eye, 33(1), 97-109. https://doi.org/10.1038/s41433-018-0269-y
  • Fleming, A. D., Philip, S., Goatman, K. A., Olson, J. A., & Sharp, P. F. (2006). Automated microaneurysm detection using local contrast normalization and local vessel detection. IEEE transactions on medical imaging, 25(9), 1223-1232. https://doi.org/10.1109/TMI.2006.879953
  • Bae, J. P., Kim, K. G., Kang, H. C., Jeong, C. B., Park, K. H., & Hwang, J. M. (2011). A study on hemorrhage detection using hybrid method in fundus images. Journal of digital imaging, 24, 394-404. https://doi.org/10.1007/s10278-010-9274-9
  • Lazar, I., & Hajdu, A. (2012). Retinal microaneurysm detection through local rotating cross-section profile analysis. IEEE transactions on medical imaging, 32(2), 400-407. https://doi.org/10.1109/TMI.2012.2228665
  • Wang, S., Tang, H. L., Hu, Y., Sanei, S., Saleh, G. M., & Peto, T. (2016). Localizing microaneurysms in fundus images through singular spectrum analysis. IEEE Transactions on Biomedical Engineering, 64(5), 990-1002. https://doi.org/10.1109/TBME.2016.2585344
  • Fleming, A. D., Philip, S., Goatman, K. A., Olson, J. A., & Sharp, P. F. (2006). Automated microaneurysm detection using local contrast normalization and local vessel detection. IEEE transactions on medical imaging, 25(9), 1223-1232. https://doi.org/10.1109/TMI.2006.879953
  • Giancardo, L., Mériaudeau, F., Karnowski, T. P., Tobin, K. W., Li, Y., & Chaum, E. (2010, March). Microaneurysms detection with the radon cliff operator in retinal fundus images. In Medical Imaging 2010: Image Processing (Vol. 7623, pp. 292-299). SPIE. https://doi.org/10.1117/12.844442
  • Quellec, G., Lamard, M., Josselin, P. M., Cazuguel, G., Cochener, B., & Roux, C. (2008). Optimal wavelet transforms for the detection of microaneurysms in retina photographs. IEEE transactions on medical imaging, 27(9), 1230-1241. https://doi.org/10.1109/TMI.2008.920619
  • Kar, S. S., & Maity, S. P. (2017). Automatic detection of retinal lesions for screening of diabetic retinopathy. IEEE Transactions on Biomedical Engineering, 65(3), 608-618. https://doi.org/10.1109/TBME.2017.2707578
  • Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 1440-1448). https://doi.org/10.1109/ICCV.2015.169
  • He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE transactions on pattern analysis and machine intelligence, 37(9), 1904-1916. https://doi.org/10.1109/TPAMI.2015.2389824
  • Girshick, R. (2015). Fast R-CNN. In Proceedings of the IEEE international conference on computer vision (pp. 1440-1448). https://doi.org/10.1109/ICCV.2015.169
  • Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, 28.
  • Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016). SSD: Single shot multibox detector. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14 (pp. 21-37). Springer International Publishing. https://doi.org/10.11648/j.sd.20160404.17
  • Fang, W., Wang, L., & Ren, P. (2019). Tinier-YOLO: A real-time object detection method for constrained environments. IEEE Access, 8, 1935-1944. https://doi.org/10.1109/ACCESS.2019.2961959
  • Van Grinsven, M. J., van Ginneken, B., Hoyng, C. B., Theelen, T., & Sánchez, C. I. (2016). Fast convolutional neural network training using selective data sampling: Application to hemorrhage detection in color fundus images. IEEE transactions on medical imaging, 35(5), 1273-1284. https://doi.org/10.1109/TMI.2016.2526689
  • Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection. In Proceedings of the IEEE international conference on computer vision (pp. 2980-2988). https://doi.org/10.1109/ICCV.2017.324
  • Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2117-2125). https://doi.org/10.1109/CVPR.2017.106
  • Kauppi, T., Kalesnykiene, V., Kamarainen, J. K., Lensu, L., Sorri, I., Raninen, A., Voutilainen, R., Uusitalo, H., Kälviäinen, H. & Pietilä, J. (2007, September). The diaretdb1 diabetic retinopathy database and evaluation protocol. In BMVC (Vol. 1, No. 1, p. 10). https://doi.org/10.5244/C.21.15
  • Seoud, L., Hurtut, T., Chelbi, J., Cheriet, F., & Langlois, J. P. (2015). Red lesion detection using dynamic shape features for diabetic retinopathy screening. IEEE transactions on medical imaging, 35(4), 1116-1126. https://doi.org/10.1109/TMI.2015.2509785
  • P, S. R., Rao, B., Anala, J., & Dangayach, M. (2022). Object Detection using Different Point Feature Techniques: A Comparative Analysis. In International Journal of Innovative Technology and Exploring Engineering (Vol. 11, Issue 12, pp. 1–4). https://doi.org/10.35940/ijitee.l9308.11111222
  • Koul, S. (2020). Contribution of Artificial Intelligence and Virtual Worlds towards development of Super Intelligent AI Agents. In International Journal of Engineering and Advanced Technology (Vol. 9, Issue 5, pp. 800–809). https://doi.org/10.35940/ijeat.e9923.069520
  • Farooq, M., & Khan, M. H. (2019). Pattern Recognition in Digital Images using Fractals. In International Journal of Engineering and Advanced Technology (Vol. 9, Issue 2, pp. 3180–3183). https://doi.org/10.35940/ijeat.b4229.129219
  • Zainudin*, M. N. S., Kee, Y. J., Idris, M. I., Kamaruddin, M. R., & Ramlee, R. H. (2019). Recognizing the Activity Daily Living (ADL) for Subject Independent. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 8, Issue 3, pp. 5422–5427). https://doi.org/10.35940/ijrte.b2381.098319
  • G., M., Salomi, M., & Priya, R. L. (2020). Pattern Recognition and Stylometry Analysis of Pathittrupathu in Tamil Literature. In International Journal of Management and Humanities (Vol. 5, Issue 2, pp. 10–15). https://doi.org/10.35940/ijmh.b1143.105220