Published November 27, 2023
| Version v1
Computational notebook
Open
Reproducibility for the paper "Using Causality Aware Graph Neural Networks to Predict Temporal Centralities in Dynamic Graphs"
- 1. Julius-Maximilians-Universität Würzburg (JMU)
Description
This is a repository to reproduce the results of the paper "Using Causality Aware Graph Neural Networks to Predict Temporal Centralities in Dynamic Graphs" accepted at the Temporal Graph Learning Workshop @ NeurIPS 2023.
https://arxiv.org/abs/2310.15865
https://openreview.net/forum?id=meet41uEs8
Files
run_experiment.ipynb
Files
(71.5 MB)
Name | Size | Download all |
---|---|---|
md5:9c66d8216d177a3d7e1d249ae8d036e1
|
7.1 kB | Preview Download |
md5:9315f84e041ab9824878792c80a96b2a
|
261.1 kB | Preview Download |
md5:f706c7442e93432a113ade1710d2f0f1
|
16.3 kB | Preview Download |
md5:a82f6b47b1f786f7e92b6be62b250af9
|
21.9 kB | Preview Download |
md5:9643d75eb45fa80b2ad625070e5f6183
|
16.6 kB | Preview Download |
md5:3cfeacbf7fe45e5d4bd8f80a08c8d5a7
|
21.6 kB | Preview Download |
md5:4e616cd2e097dad757b41cc50a63cfdf
|
5.8 kB | Preview Download |
md5:8327beefb1c6907c25994439d8ddc2ce
|
5.1 kB | Preview Download |
md5:73cde02089e88b37f0bc3539ed86b005
|
6.0 kB | Preview Download |
md5:208404a3dfe4c85fa2cd60a9dce40b14
|
5.2 kB | Preview Download |
md5:067dcce7689f2076171cccd77de29e9b
|
13.7 kB | Preview Download |
md5:f61b45ad3395e8b3a3f64533330933b7
|
27.3 kB | Preview Download |
md5:9534042cae214142ff5a0c614c28866c
|
13.8 kB | Preview Download |
md5:9b3b47d7fcaba7f1111a1d4ec12469d2
|
27.4 kB | Preview Download |
md5:f5c8e79cc16cc7485becc65002a9cb55
|
228.3 kB | Download |
md5:bf35f96fe0fff9ccb8da6d244516d1c9
|
70.5 kB | Preview Download |
md5:cb1ccc2481422eb804ea9a3616f2d881
|
39.0 kB | Preview Download |
md5:ca5f9d3dc6c15cf15041ecc69db5389f
|
17.7 kB | Preview Download |
md5:07e1ceddf12ce6653e7c3bd0ae64bf31
|
9.6 kB | Preview Download |
md5:50b437e49a3b55bd136e981d82c05786
|
51.9 kB | Preview Download |
md5:1b7c918161f0e29b82947ebf66c47821
|
38.9 kB | Preview Download |
md5:3d384e212e9fc67a84f855d5e625a63d
|
4.2 kB | Preview Download |
md5:eb1b8fd6cbe539354c5a863b8d0d127c
|
10.3 MB | Preview Download |
md5:93f85f4de2f05d942316a44851ad945d
|
310.6 kB | Preview Download |
md5:d6fa755da3ccd4033d12d5ffb36c0900
|
594.0 kB | Preview Download |
md5:2f8d8aa4cc495894ee53237239f9b178
|
555.1 kB | Preview Download |
md5:0d609501af93df35663260adb96f6d00
|
11.9 kB | Preview Download |
md5:43d8a64a8da789300c9912fd8cafeb09
|
28.8 MB | Preview Download |
md5:9cd24761edfc6cf3f8b77f044a2fe893
|
22.3 MB | Preview Download |
md5:b159a1bcffa9651d33809406dadcdeab
|
1.0 MB | Preview Download |
md5:53fb10aea9205bc817bc382a385e9e3d
|
1.3 MB | Preview Download |
md5:7d8e4042f9ecf4516c0762c1bde1d48d
|
2.7 MB | Preview Download |
md5:c68d7aeda55766cd125c9cde597073db
|
2.5 MB | Preview Download |
md5:37e8cbde0d1c2ced50309a62a2f5af13
|
72.1 kB | Preview Download |
md5:309ec9df7b28f89c52f85455befde473
|
76.9 kB | Preview Download |
md5:b15c17e588a9e41bbd52d3ca57313e35
|
2.2 kB | Preview Download |
md5:cf467ea53fc168d9d035c74dcfd7c445
|
2.5 kB | Preview Download |
md5:5ba5a16b0442912e462e2a7d8b5f79a6
|
15.0 kB | Download |
Additional details
Related works
- Is supplemented by
- arXiv:2310.15865 (arXiv)
Funding
- Swiss National Science Foundation
- Next-Generation Network Analytics for Time Series Data 176938