Published November 27, 2023 | Version v1
Computational notebook Open

Reproducibility for the paper "Using Causality Aware Graph Neural Networks to Predict Temporal Centralities in Dynamic Graphs"

  • 1. Julius-Maximilians-Universität Würzburg (JMU)

Description

This is a repository to reproduce the results of the paper "Using Causality Aware Graph Neural Networks to Predict Temporal Centralities in Dynamic Graphs" accepted at the Temporal Graph Learning Workshop @ NeurIPS 2023.

https://arxiv.org/abs/2310.15865

https://openreview.net/forum?id=meet41uEs8

Files

run_experiment.ipynb

Files (71.5 MB)

Name Size Download all
md5:9c66d8216d177a3d7e1d249ae8d036e1
7.1 kB Preview Download
md5:9315f84e041ab9824878792c80a96b2a
261.1 kB Preview Download
md5:f706c7442e93432a113ade1710d2f0f1
16.3 kB Preview Download
md5:a82f6b47b1f786f7e92b6be62b250af9
21.9 kB Preview Download
md5:9643d75eb45fa80b2ad625070e5f6183
16.6 kB Preview Download
md5:3cfeacbf7fe45e5d4bd8f80a08c8d5a7
21.6 kB Preview Download
md5:4e616cd2e097dad757b41cc50a63cfdf
5.8 kB Preview Download
md5:8327beefb1c6907c25994439d8ddc2ce
5.1 kB Preview Download
md5:73cde02089e88b37f0bc3539ed86b005
6.0 kB Preview Download
md5:208404a3dfe4c85fa2cd60a9dce40b14
5.2 kB Preview Download
md5:067dcce7689f2076171cccd77de29e9b
13.7 kB Preview Download
md5:f61b45ad3395e8b3a3f64533330933b7
27.3 kB Preview Download
md5:9534042cae214142ff5a0c614c28866c
13.8 kB Preview Download
md5:9b3b47d7fcaba7f1111a1d4ec12469d2
27.4 kB Preview Download
md5:f5c8e79cc16cc7485becc65002a9cb55
228.3 kB Download
md5:bf35f96fe0fff9ccb8da6d244516d1c9
70.5 kB Preview Download
md5:cb1ccc2481422eb804ea9a3616f2d881
39.0 kB Preview Download
md5:ca5f9d3dc6c15cf15041ecc69db5389f
17.7 kB Preview Download
md5:07e1ceddf12ce6653e7c3bd0ae64bf31
9.6 kB Preview Download
md5:50b437e49a3b55bd136e981d82c05786
51.9 kB Preview Download
md5:1b7c918161f0e29b82947ebf66c47821
38.9 kB Preview Download
md5:3d384e212e9fc67a84f855d5e625a63d
4.2 kB Preview Download
md5:eb1b8fd6cbe539354c5a863b8d0d127c
10.3 MB Preview Download
md5:93f85f4de2f05d942316a44851ad945d
310.6 kB Preview Download
md5:d6fa755da3ccd4033d12d5ffb36c0900
594.0 kB Preview Download
md5:2f8d8aa4cc495894ee53237239f9b178
555.1 kB Preview Download
md5:0d609501af93df35663260adb96f6d00
11.9 kB Preview Download
md5:43d8a64a8da789300c9912fd8cafeb09
28.8 MB Preview Download
md5:9cd24761edfc6cf3f8b77f044a2fe893
22.3 MB Preview Download
md5:b159a1bcffa9651d33809406dadcdeab
1.0 MB Preview Download
md5:53fb10aea9205bc817bc382a385e9e3d
1.3 MB Preview Download
md5:7d8e4042f9ecf4516c0762c1bde1d48d
2.7 MB Preview Download
md5:c68d7aeda55766cd125c9cde597073db
2.5 MB Preview Download
md5:37e8cbde0d1c2ced50309a62a2f5af13
72.1 kB Preview Download
md5:309ec9df7b28f89c52f85455befde473
76.9 kB Preview Download
md5:b15c17e588a9e41bbd52d3ca57313e35
2.2 kB Preview Download
md5:cf467ea53fc168d9d035c74dcfd7c445
2.5 kB Preview Download
md5:5ba5a16b0442912e462e2a7d8b5f79a6
15.0 kB Download

Additional details

Related works

Is supplemented by
arXiv:2310.15865 (arXiv)

Funding

Swiss National Science Foundation
Next-Generation Network Analytics for Time Series Data 176938