Published September 22, 2017 | Version v1
Journal article Open

Ultrasound Assisted Casting of an AM60 Based Metal Matrix Nanocomposite, Its Properties, and Recyclability

  • 1. Helmholtz-Zentrum Geesthacht
  • 2. Helmholtz-Zentrum Geesthacht AND Brunel University
  • 3. National Research Tomsk State University
  • 4. The University of Queensland

Description

An AM60 magnesium alloy nanocomposite reinforced with 1 wt % of AlN nanoparticles was prepared using an ultrasound (US) assisted permanent-mould indirect-chill casting process. Ultrasonically generated cavitation and acoustic streaming promoted de-agglomeration of particle clusters and distributed the particles throughout the melt. Significant grain refinement due to nucleation on the AlN nanoparticles was accompanied by an exceptional improvement in properties: yield strength increased by 103%, ultimate tensile strength by 115%, and ductility by 140%. Although good grain refinement was observed, the large nucleation undercooling of 14 K Limits further refinement because nucleation is prevented by the formation of a nucleation-free Zone around each grain. To assess the industrial applicability and recyclability of the nanocomposite material in various casting processes, tests were performed to determine the effect of remelting on the microstructure. With each remelting, a small percentage of effective AlN nanoparticles was lost, and some grain growth was observed. However, even after the third remelting, excellent strength and ductility was retained. According to strengthening models, enhanced yield strength is mainly attributed to Hall-Petch strengthening caused by the refined grain size. A small additional contribution to strengthening is attributed to Orowan strengthening.

Files

metals-07-00388-v2.pdf

Files (2.6 MB)

Name Size Download all
md5:7ec5d94cca35ac0ff88ff22bcb64a0da
2.6 MB Preview Download

Additional details

Funding

European Commission
EXOMET – Physical processing of molten light alloys under the influence of external fields 280421