Published December 5, 2023 | Version v1
Journal article Open

Effects of ammonia on different biological traits of the Orange Mud Crab (Scylla olivacea)

  • 1. Fisheries and Marine Resource Technology Discipline, Life Science School, Khulna University, Khulna – 9208, Bangladesh
  • 2. Department of Aquaculture, Faculty of Agriculture, University Putra Malaysia (UPM), Serdang 43400, Malaysia
  • 1. Fisheries and Marine Resource Technology Discipline, Life Science School, Khulna University, Khulna – 9208, Bangladesh
  • 2. Department of Aquaculture, Faculty of Agriculture, University Putra Malaysia (UPM), Serdang 43400, Malaysia


The orange mud crab (Scylla olivacea) is currently one of the most emerging crustacean species for coastal aquaculture, particularly in the Asian region. This species is sensitive to various aspects of water quality parameters. Ammonia is considered as one of the most common pollutants in crab farms that adversely affect overall production. Therefore, the present study observed the effects of different experimental doses of ammonia (0PPM, 5 PPM and 10 PPM) to investigate the effects on various aspects of cellular, physiological, biochemical and genetic alterations in the orange mud crab (Scylla olivacea). Significantly lower hemocyte counts were observed for the 5 PPM and 10 PPM ammonia treatments compared to the control group while no significant difference was detected between the two treatment groups. Ammonia treatments significantly altered expression pattern of the selected set of candidate genes. The α-amylase (growth gene) showed reduced expression (1.5–2 fold lower) in treatments while Toll like receptor (immune response gene) and Acetyl-CoA Carboxylase (metabolic gene) also showed significantly lower expression levels in treatment groups compared to the control. Significantly higher (P < 0.05) and constant rates of O2 consumption in the control group throughout the experiment indicate that these crabs faced no stress and performed faster growth. Therefore, crabs in the control group (0 PPM) showed almost double growth (increase in body weight) compared to treatment groups (5 PPM and 10 PPM). Results indicate that different experimental doses of ammonia significantly altered the expression of candidate genes together with changes in physiological (O2 consumption rates, growth), biochemical (total hemocyte counts, glucose and serotonin levels) and cellular (gill ultrastructure) parameters that adversely affected growth and mortality of crabs. Therefore, attempts are encouraged to maintain minimum or zero ammonia levels for sustainable mud crab farming across the coastal regions of Bangladesh.



Files (2.5 MB)

Name Size Download all
2.5 MB Preview Download

Additional details

Additional titles

Subtitle (English)
Ammonia influence on biological traits in crab




  • Afroz, K. B., Shah, M. S., Salin, K. R, & Rahi, M. L. (2021). Growth and survival of diploid and triploid bata, Labeo bata (Hamilton, 1822). Aquaculture Fish and Fisheries, 1(1), 42-50.
  • Ali, M. R., Rahi, M. L., Islam, S. S., Shah, M. S., & Shams, F. I. (2015). Genetic variability assay of different strains of Catla catla. International Journal of Life Sciences, 9(1), 37-42.
  • Anthonisen, A. C., Loehr, R. C., Prakasam, T. B. S., & Srinath, E. G. (1976). Inhibition of nitrification by ammonia and nitrous acid. Journal (Water Pollution Control Federation), 835-852.
  • Arana, L. V. (1997). Princípios químicos da qualidade da água em aqüicultura. Florianópolis/SC, Ed. da UFSC. 166p.
  • Augspurger, T., Keller, A. E., Black, M. C., Cope, W. G., & Dwyer, F. J. (2003). Water quality guidance for protection of freshwater mussels (Unionidae) from ammonia exposure. Environmental Toxicology and Chemistry: An International Journal, 22(11), 2569-2575.
  • Azam, K., Kamal, D., & Mostofa, M. (1998). Status and potential of mud crab (Scylla serrata) in Bangladesh. Integrated management of Ganges floodplains and Sundarbans ecosystem. Khulna University, Bangladesh.
  • Aziz, D., Nguyen, V. T., Rahi, M. L., Hurwood, D. A., & Mather, P. B. (2017). Identification of genes that potentially affect social dominance hierarchy in adult male giant freshwater prawns (Macrobrachium rosenbergii). Aquaculture, 476, 168–184.
  • Aziz, D., Rahi, M. L., Hurwood, D. A., & Mather, P. B. (2018). Analysis of candidate gene expression patterns of adult male Macrobrachium rosenbergii morphotypes in response to a social dominance hierarchy. Hydrobiologia, 825(1), 121–136. 0-018-3721-x.
  • Baliao, D. D., de los Santos, M. A., & Franco, N. M. (1999). Mudcrab, Scylla spp, production in brackishwater ponds. Aquaculture Department, Southeast Asian Fisheries Development Center.
  • Barbieri, E., de Oliveira, I. R., & Serralheiro, P. C. (2002). The use of metabolism to evaluate the toxicity of dodecil benzen sodium sulfonate (LAS-C12) on the Mugil platanus (mullet) according to the temperature and salinity. Journal of Experimental Marine Biology and Ecology, 277(2), 109-127.
  • Barbieri, E. (2009). Effects of zinc and cadmium on oxygen consumption and ammonium excretion in pink shrimp (Farfantepenaeus paulensis, Pérez-Farfante, 1967, Crustacea). Ecotoxicology, 18(3), 312-318.
  • Bögner, M., Schwenke, C., Gürtzgen, T., Bögner, D., & Slater, M.J. (2018). Effect of ambient light intensity on growth performance and diurnal stress response of juvenile starry flounder (Platichthys stellatus) in recirculating aquaculture systems (RAS). Aquaculture Engineering, 83, 20–26.
  • Boudou, A., & Ribeyre, F. (2018). Fish as "biological model" for experimental studies in ecotoxicology. Aquatic ecotoxicology fundamental concepts and methodologies, 8, 127-150.
  • Boudour-Boucheker, N., Boulo, V., Charmantier-Daures, M., Anger, K., Charmantier, G., & Lorin-Nebel, C. (2016). Osmoregulation in larvae and juveniles of two recently separated Macrobrachium species: Expression patterns of ion transporter genes. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 195, 39-45.
  • Bouwman, A. F., Pawłowski, M., Liu, C., Beusen, A. H., Shumway, S. E., Glibert, P. M., & Overbeek, C. C. (2011). Global hindcasts and future projections of coastal nitrogen and phosphorus loads due to shellfish and seaweed aquaculture. Reviews in Fisheries Science, 19(4), 331-357.
  • Chang, E. S., Chang, S. A., Beltz, B. S., & Kravitz, E. A. (1999). Crustacean hyperglycemic hormone in the lobster nervous system: localization and release from cells in the subesophageal ganglion and thoracic second roots. Journal of Comparative Neurology, 414(1), 50-56.
  • Chen, H. C., Brown, J. H., Morell, J. L., & Huang, C. M. (1988). Synthetic magainin analogues with improved antimicrobial activity. Febs Letters, 236(2), 462-466.
  • De, M., Ghaffar, M. A., Noor, N. M., Zaidi Che Cob, Z. C., Bakar, Y., & Das, S. K., (2019). Effects of water temperature and diet on blood parameters and stress levels in hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂) juveniles. Aquaculture Reports, 15, 100219.
  • Deris, Z. M., Iehata, S., Ikhwanuddin, M., Sahimi, M. B. M. K., Do, T. D., Sorgeloos, P., Sung, Y. Y., & Wong, L. L. (2020). Immune and bacterial toxin genes expression in different giant tiger prawn, Penaeus monodon post-larvae stages following AHPND-causing strain of Vibrio parahaemolyticus challenge. Aquaculture Reports, 16, 100248.
  • FRSS. (2015). Fisheries Statistical Report of Bangladesh. Fisheries Resources Survey System (FRSS), Department of Fisheries, Bangladesh. Volume 31: 57 p.
  • Fuchs, V. I., Schmidt, J., Slater, M. J., Zentek, J., Buck, B. H., & Steinhagen, D. (2015). The effect of supplementation with polysaccharides, nucleotides, acidifiers and Bacillus strains in fish meal and soy bean based diets on growth performance in juvenile turbot (Scophthalmus maximus). Aquaculture, 437, 243–251.
  • Havird, J. C., Santos, S. R., & Henry, R. P. (2014). Osmoregulation in Hawaiian anchialine shrimp Halocaridina rubra: Expression of ion transporters, mitochondria-rich cell proliferation and haemolymph osmolality during salinity transfers. Journal of Experimental Biology, 217, 2309–2320.
  • Hegazi, M. M., Attia, Z. I., & Ashour, O. A. (2010). Oxidative stress and antioxidant enzymes in liver and white muscle of Nile tilapia juveniles in chronic ammonia exposure. Aquatic Toxicology, 99(2), 118-125.
  • Islam, S. S., Shah, M. S., & Rahi, M. L. (2014). Assessment of genetic variability of prawn (Macrobrachium rosenbergii) post larvae (PL) from the broods stocked under different sex ratios. International Journal of Aquaculture, 4(9), 55–63.
  • Jaffer, Y. D., Saraswathy, R., Ishfaq, M., Antony, J., Bundela, D. S., & Sharma, P. C. (2020). Effect of low salinity on the growth and survival of juvenile Pacific white shrimp, Penaeus vannamei: A revival. Aquaculture, 515, 734561.
  • Jung, H., Lyons, R. E., Hurwood, D. A., & Mather, P. B. (2013). Genes and growth performance in crustacean species: a review of relevant genomic studies in crustaceans and other taxa. Reviews in Aquaculture, 5(2), 77-110.
  • Kim, J. H., Kang, Y. J., & Lee, K. M. (2022). Effects of Nitrite Exposure on the Hematological Properties, Antioxidant and Stress Responses of Juvenile Hybrid Groupers, Epinephelus lanceolatus♂× Epinephelus fuscoguttatus♀. Antioxidants, 11(3), 545.
  • Lemaire, P., Sturve, J., Förlin, L., & Livingstone, D. R. (1996). Studies on aromatic hydrocarbon quinone metabolism and DT-diaphorase function in liver of fish species. Marine Environmental Research, 42(1-4), 317-321.
  • Lin, Y. C., & Chen, J. C. (2003). Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture, 224(1-4), 193-201.
  • Lu, Y. J., Chen, S. Y., Lai, Y. C., Chaiyawat, P., Chao, Y. H., Chuang, L. M., Shih, T. T. F. & Wang, H. K. (2022). Muscle microcirculatory responses to incremental exercises are correlated with peak oxygen uptake in individuals with and without Type 2 diabetes mellitus. Metabolic Syndrome and Related Disorders, 20(7), 405-413.
  • Lv, J., Sun, D., Yan, D., Ti, X., Liu, P., & Li, J. (2019). Quantitative trait loci mapping and marker identification for low salinity tolerance trait in the swimming crab (Portunus trituberculatus). Frontiers in Genetics, 10, 1193.
  • Moshtaghi, A., Rahi, M. L., Nguyen, V. T., Mather, P. B., & Hurwood, D. A. (2016). A transcriptomic scan for potential candidate genes involved in osmoregulation in an obligate freshwater palaemonid prawn (Macrobrachium australiense). PeerJ, 4, e2520.
  • Moshtaghi, A., Rahi, M. L., Mather, P. B., & Hurwood, D. A. (2017). Understanding the genomic basis of adaptive response to variable osmotic niches in freshwater prawns: a comparative intraspecific RNA-Seq analysis of Macrobrachium australiense. Journal of Heredity, 108(5), 544-552
  • Moshtaghi, A., Rahi, M. L., Mather, P. B., & Hurwood, D. A. (2018). An investigation of gene expression patterns that contribute to osmoregulation in Macrobrachium australiense: Assessment of adaptive responses to different osmotic niches. Gene Reports, 13, 76–83.
  • Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT–PCR. Nucleic acids research, 29(9), e45-e45.
  • Pravda, D., & Svobodová, Z. (2003). Haematology of fishes. Veterinary Haematology, 381, 397.
  • Rahi, M. L., & Shah, M. S. (2012). Triploidization in rohu × mrigal hybrid and comparison of growth performance of triploid hybrid. Aquaculture Research, 43(12), 1867-1879.
  • Rahi, M. L. (2017). Understanding the molecular basis of adaptation to freshwater environments by Prawns in the Genus Macrobrachium. PhD Thesis, Science and Engineering Faculty, Queensland University of Technology, Australia.
  • Rahi, M. L., Amin, S., Mather, P. B., & Hurwood, D. A. (2017). Candidate genes that have facilitated freshwater adaptation by palaemonid prawns in the genus Macrobrachium: identification and expression validation in a model species (M. koombooloomba). PeerJ, 5, e2977.
  • Rahi, M. L., Moshtaghi, A., Mather, P. B., & Hurwood, D. A. (2018). Osmoregulation in decapod crustaceans: physiological and genomic perspectives. Hydrobiologia, 825, 177-188.
  • Rahi, M. L., Mather, P. B., Ezaz, T., & Hurwood, D. A. (2019). The molecular basis of freshwater adaptation in prawns: Insights from comparative transcriptomics of three Macrobrachium species. Genome Biology and Evolution, 11(4), 1002–1018.
  • Rahi, M. L., Ferdusy, T., Wali Ahmed, S., Khan, M. N., Aziz, D., & Salin, K. R. (2020). Impact of salinity changes on growth, oxygen consumption and expression pattern of selected candidate genes in the orange mud crab (Scylla olivacea). Aquaculture Research, 51(10), 4290-4301.
  • Rahi, M. L., Mather, P. B., & Hurwood, D. A. (2021a). Do plasticity in gene expression and physiological responses in Palaemonid prawns facilitate adaptive response to different osmotic challenges? Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 251, 110810.
  • Rahi, M. L., Mahmud, S., Dilruba, K. J., Sabbir, W., Aziz, D., & Hurwood, D. A. (2021b). Temperature induced changes in physiological traits and expression of selected candidate genes in black tiger shrimp (Penaeus monodon) larvae. Aquaculture Reports, 19, 100620.
  • Rahi, M. L., Azad, K. N., Tabassum, M., Irin, H. H., Hossain, K. S., Aziz, D., Moshtaghi, A., & Hurwood, D. A. (2021c). Effects of salinity on physiological, biochemical and gene expression parameters of black tiger shrimp (Penaeus monodon): Potential for farming in low-salinity environments. Biology, 10(12), 1220
  • Rahi, M. L., Sabbir, W., Salin, K. R., Aziz, D., & Hurwood, D. A. (2022). Physiological, biochemical and genetic responses of black tiger shrimp (Penaeus monodon) to differential exposure to white spot syndrome virus and Vibrio parahaemolyticus. Aquaculture, 546, 737337.
  • Rahman, M. M., Salin, K. R., Tsusaka, T. W., Anal, A. K., Rahi, M. L., & Yakupitiyage, A. (2022). Effect of stocking density on growth performance and gonadal maturity of all‐female giant freshwater prawn, Macrobrachium rosenbergii. Journal of the World Aquaculture Society, 53, 1120-1133.
  • Rajendiran, S., Iqbal, B. M. M., & Vasudevan, S. (2016). Induced thermal stress on serotonin levels in the blue swimmer crab, Portunus pelagicus. Biochemistry and Biophysics Reports, 5, 425-429.
  • Rogl, K. A., Rahi, M. L., Royle, J., Prentis, P. J., & Hurwood, D. A. (2018). A transcriptome-wide assessment of differentially expressed genes among two highly divergent, yet sympatric, lineages of the freshwater Atyid shrimp, Paratya australiensis. Hydrobiologia, 825(1), 189–196.
  • Romano, N., & Zeng, C. (2013). Toxic effects of ammonia, nitrite, and nitrate to decapod crustaceans: a review on factors influencing their toxicity, physiological consequences, and coping mechanisms. Reviews in Fisheries Science, 21(1), 1-21.
  • Rosas, C., López, N., Mercado, P., & Martínez, E. (2001). Effect of salinity acclimation on oxygen consumption of juveniles of the white shrimp Litopenaeus vannamei. Journal of Crustacean Biology, 21(4), 912-922.
  • Russo, R. C., & Pilli, A. (1985). AQUIRE: Aquatic Information Retrieval Toxicity Data Base: Project Description, Guidelines, and Procedures. Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency.
  • Sabbir, W., Masud, M. A. A., Islam, S. S., Rahman, M. A., Islam, M. R., & Rahi, M. L. (2010). Some aspects of water quality parameters of the Mouri River, Khulna: An attempt to estimate pollution status. Bangladesh Research Publications Journal, 4(1), 95-102.
  • Salam, M. A., Islam, S. M. M., Gan, J., & Ross, L. (2012). Crab culture potential in southwestern Bangladesh: alternative to shrimp culture for climate change adaption. International Research Journal of Applied Life Sciences, 1(4), 15-31.
  • Seibel, H., Baßmann, B., & Rebl, A. (2021). Blood will tell: what hematological analyses can reveal about fish welfare. Frontiers in Veterinary Science, 8, 616955.
  • Shah, M. S., Ghosh, A. K., Rahi, M. L., Huq, K. A., Rahaman, S. M. B., & Sabbir, W. (2011). Production of heterotic hybrid in Rohu through strain crossing. International Journal of Life Sciences, 5(1), 32-38.
  • Shin, Y. K., Ju, S. M., Park, J. J., Jin, Y. G., Lim, H. S., & Lee, J. S. (2016). Changes of Mortality, Oxygen Consumption Rate and Organ Structure in the Oyster Crassostrea gigas Exposed to Lead. The Korean Journal of Malacology, 32(1), 9-15.
  • Shirangi, S. A., Kalbassi, M. R., Khodabandeh, S., Jafarian, H., Lorin-Nebel, C., Farcy, E., & Lignot, J. H. (2016). Salinity effects on osmoregulation and gill morphology in juvenile Persian sturgeon (Acipenser persicus). Fish Physiology and Biochemistry, 42(6), 1741-1754.
  • Song, Y. L., Yu, C. I., Lien, T. W., Huang, C. C., & Lin, M. N. (2003). Haemolymph parameters of Pacific white shrimp (Litopenaeus vannamei) infected with Taura syndrome virus. Fish & Shellfish Immunology, 14(4), 317-331.
  • Velotta, J. P., McCormick, S. D., & Schultz, E. T. (2015). Trade-offs in osmoregulation and parallel shifts in molecular function follow ecological transitions to freshwater in the Alewife. Evolution, 69(10), 2676-2688.
  • Waiho, K., Fazhan, H., Shahreza, M. S., Moh, J. H. Z., Noorbaiduri, S., Wong, L. L., Sinnasamy, S. & Ikhwanuddin, M. (2017). Transcriptome analysis and differential gene expression on the testis of orange mud crab, Scylla olivacea, during sexual maturation. PLoS One, 12(1), e0171095.
  • Wajsbrot, N., Gasith, A., Diamant, A., & Popper, D. M. (1993). Chronic toxicity of ammonia to juvenile gilthead seabream Sparus aurata and related histopathological effects. Journal of Fish Biology, 42(3), 321-328.
  • Wu, H., Aoki, A., Arimoto, T., Nakano, T., Ohnuki, H., Murata, M., Ren, H. & Endo, H. (2015). Fish stress become visible: A new attempt to use biosensor for real-time monitoring fish stress. Biosensors and Bioelectronics, 67, 503-510.
  • Zhang, S., Wang, J., Chen, X., Gui, J., Sun, Y., & Wu, D. (2021). Industrial-scale food waste composting: Effects of aeration frequencies on oxygen consumption, enzymatic activities and bacterial community succession. Bioresource Technology, 320, 124357.
  • Zhao, L., Cui, C., Liu, Q., Sun, J., He, K., Adam, A. A., & Yang, S. (2020). Combined exposure to hypoxia and ammonia aggravated biological effects on glucose metabolism, oxidative stress, inflammation and apoptosis in largemouth bass (Micropterus salmoides). Aquatic Toxicology, 224, 105514.