There is a newer version of the record available.

Published November 2023 | Version 1.0
Dataset Open

GlobPOP: A 31-year (1990-2020) global gridded population dataset generated by cluster analysis and statistical learning

  • 1. Beijing normal university

Description

Data Update Notice 数据更新通知

We are pleased to announce that the GlobPOP dataset for the years 2021-2022 has undergone a comprehensive quality check and has now been updated accordingly. Following the established methodology that ensures the high precision and reliability, these latest updates allow for even more comprehensive time-series analysis. The updated GlobPOP dataset remains available in GeoTIFF format for easy integration into your existing workflows.

2021-2022 年的 GlobPOP 数据集经过全面的质量检查,现已进行相应更新。 遵循确保高精度和可靠性的原有方法,本次更新允许进行更全面的时间序列分析。 更新后的 GlobPOP 数据集仍以 GeoTIFF 格式提供,以便轻松集成到您现有的工作流中。

To reflect these updates, our interactive web application has also been refreshed. Users can now explore the updated national population time-series curves from 1990 to 2022. This can be accessed via the same link: https://globpop.shinyapps.io/GlobPOP/. Thank you for your continued support of the GlobPOP, and we hope that the updated data will further enhance your research and policy analysis endeavors.

交互式网页反映了人口最新动态,用户现在可以探索感兴趣的国家1990 年至 2022 年人口时间序列曲线,并将其与人口普查数据进行比较。感谢您对 GlobPOP 的支持,我们希望更新的数据将进一步加强您的研究和政策分析工作。

If you encounter any issues, please contact us via email at lulingliu@mail.bnu.edu.cn.

如果您遇到任何问题,请通过电子邮件联系我们。

Introduction

Continuously monitoring global population spatial dynamics is essential for implementing effective policies related to sustainable development, such as epidemiology, urban planning, and global inequality. 

Here, we present GlobPOP, a new continuous global gridded population product with a high-precision spatial resolution of 30 arcseconds from 1990 to 2020. Our data-fusion framework is based on cluster analysis and statistical learning approaches, which intends to fuse the existing five products(Global Human Settlements Layer Population (GHS-POP), Global Rural Urban Mapping Project (GRUMP), Gridded Population of the World Version 4 (GPWv4), LandScan Population datasets and WorldPop datasets to a new continuous global gridded population (GlobPOP). The spatial validation results demonstrate that the GlobPOP dataset is highly accurate. To validate the temporal accuracy of GlobPOP at the country level, we have developed an interactive web application, accessible at https://globpop.shinyapps.io/GlobPOP/, where data users can explore the country-level population time-series curves of interest and compare them with census data. 

With the availability of GlobPOP dataset in both population count and population density formats, researchers and policymakers can leverage our dataset to conduct time-series analysis of population and explore the spatial patterns of population development at various scales, ranging from national to city level.

Data description

The product is produced in 30 arc-seconds resolution(approximately 1km in equator) and is made available in GeoTIFF format. There are two population formats, one is the 'Count'(Population count per grid) and another is the 'Density'(Population count per square kilometer each grid)

Each GeoTIFF filename has 5 fields that are separated by an underscore "_". A filename extension follows these fields. The fields are described below with the example filename:

GlobPOP_Count_30arc_1990_I32  

Field 1: GlobPOP(Global gridded population)
Field 2: Pixel unit is population "Count" or population "Density"
Field 3: Spatial resolution is 30 arc seconds
Field 4: Year "1990"
Field 5: Data type is I32(Int 32) or F32(Float32)

More information

Please refer to the paper for detailed information:

Liu, L., Cao, X., Li, S. et al. A 31-year (1990–2020) global gridded population dataset generated by cluster analysis and statistical learning. Sci Data 11, 124 (2024). https://doi.org/10.1038/s41597-024-02913-0.

The fully reproducible codes are publicly available at GitHub: https://github.com/lulingliu/GlobPOP.

Notes

This research was supported by the National Natural Science Foundation of China (Grant No. 42192584 and 42371334) and Open Fund of State Key Laboratory of Remote Sensing Science and Beijing Engineering Research Center for Global Land Remote Sensing Products (Grant No. OF202316).

Files

GlobPOP_Count_30arc_1990_I32.tiff

Files (22.5 GB)

Name Size Download all
md5:cad2a075fc7ce65c0e2bc688c13b4a10
73.4 MB Preview Download
md5:391d6ad34c2a679244d20d814cc48da8
75.3 MB Preview Download
md5:e4721e4b0286a572a5e6502feb397bfa
77.2 MB Preview Download
md5:c03db6e3cd072c9910d713b7a3a28bf8
78.1 MB Preview Download
md5:c923b2982a8483d6f863878d16df248b
77.9 MB Preview Download
md5:a2e3f9261c67d4f2c11eb2f38319ccc1
78.0 MB Preview Download
md5:0c516276467f0df51891e9b37f25e6b4
78.4 MB Preview Download
md5:f404f2f3442c22200bb0fac7bb498b7d
79.0 MB Preview Download
md5:99c2ca6f11173a62011986e134544763
78.0 MB Preview Download
md5:401fa05bd07fc48d8cac60beb19cc336
77.6 MB Preview Download
md5:bead3caf7091d4fc7809d5732a00f88b
117.5 MB Preview Download
md5:2cfe107a0bef776781dde553aefc42ff
130.3 MB Preview Download
md5:fee2ae90c8352d8db2ad0e7a7bb28086
131.8 MB Preview Download
md5:20a1083d544246fce26c866a37862e16
128.8 MB Preview Download
md5:35b285a233a989f3f197da4cac9bff68
125.4 MB Preview Download
md5:41071f1c6af859fc8ea2325e6389c529
124.9 MB Preview Download
md5:6f61290e48577379efaffc1c7339ccde
127.8 MB Preview Download
md5:3e7a9bae7e00e99c25263d61f1c3fd91
126.4 MB Preview Download
md5:001dc86a8475c5187b5df405e59d8dfb
121.6 MB Preview Download
md5:2552fdd34434f27689ca431b62651ae6
122.2 MB Preview Download
md5:e53981cbfa3b0d4435d2e3316695baa6
131.7 MB Preview Download
md5:c696db722161cdbe54850d0a57acaed5
130.0 MB Preview Download
md5:f6682580b434130b2de78ee022812498
129.4 MB Preview Download
md5:bc249da40ecd5e3754b9e58031a3bbe1
130.3 MB Preview Download
md5:c3fe75af9bc48445eb7c5bec24bd1971
131.2 MB Preview Download
md5:78d02f5b5d5bb8ab1d48f88331ca4866
129.1 MB Preview Download
md5:9ef07418d95e9f9fd9cfcec1c3389be4
132.1 MB Preview Download
md5:8e390bb40e93b627e1b1b381481bc11b
131.2 MB Preview Download
md5:a31acc333db4f2db0a15da202fba6d68
132.2 MB Preview Download
md5:1efb09dde599da0f555c6d80ec4d06a7
130.3 MB Preview Download
md5:5624047c15b6dc4bb4e629d2d8731f5f
125.8 MB Preview Download
md5:9f5e0192f46828a4c99cc67549c3ace6
278.9 MB Preview Download
md5:43c1943dad14cd3db99ab91cc4a1b7ef
346.9 MB Preview Download
md5:31127d6a5ed3666a5d973ab76abf5d0e
330.2 MB Preview Download
md5:15c1b1370d18d13bfcae3f380ce05fc4
315.6 MB Preview Download
md5:7eae971affde6985c35876d181d7e083
304.1 MB Preview Download
md5:97dc37f12894bf0702776c855fb785bf
309.9 MB Preview Download
md5:989837741dd609135614ae4d154ca133
318.1 MB Preview Download
md5:80e25d969029743014524d80a0d69176
322.4 MB Preview Download
md5:3b0da26f7186e3c7e989066ded6818f0
323.7 MB Preview Download
md5:4d567f9d7fb29db636720256a0d1fdf3
330.9 MB Preview Download
md5:6c19fe036e529f6d2bbd814f0c5ba248
724.8 MB Preview Download
md5:c8ad8b93d25bb281b48aacd97a3b111a
750.5 MB Preview Download
md5:d16d615e9fe2d0e853556262b9841af0
769.4 MB Preview Download
md5:a957fc58bdbd4cedb0e1a232c58647ed
760.6 MB Preview Download
md5:6a138e3cea9ccfe85b67ebc9d6f309a8
754.0 MB Preview Download
md5:5fa3dcba1c9ebd69f88107d21850d726
751.3 MB Preview Download
md5:30a4edcdc1f3d4451c2ff8653c2447b5
760.4 MB Preview Download
md5:fb0eb4c5f4aa8b7e8586bf689cfecccc
767.9 MB Preview Download
md5:b20cf636317d1df1b22e6cfff202e683
733.2 MB Preview Download
md5:1f12a8e17746fc1c187568237d8293db
731.5 MB Preview Download
md5:39d59294b772518682f98ab4362de81b
776.8 MB Preview Download
md5:c67feaa1c77bd87dad388c610cf4cff3
761.1 MB Preview Download
md5:fca44e4e3702c34a1bcf8d05bfc1f2de
773.5 MB Preview Download
md5:858da58bbfa247cf5187e3aba6232338
776.2 MB Preview Download
md5:efcef15c2e258a61570246158df930c9
782.1 MB Preview Download
md5:ff5306757c56c00e4e7c2bd62856e793
744.3 MB Preview Download
md5:341dc7cd59fb4e0454e1b778afd03861
756.2 MB Preview Download
md5:a4256f2717fc91248e4bcebf6f860be5
755.5 MB Preview Download
md5:1cc3343a594d0a32f2792808203ebe97
767.2 MB Preview Download
md5:74034724726073fe4697dfb3917b72de
751.6 MB Preview Download
md5:7ac80413d2f42374ac8630d8677b25be
721.3 MB Preview Download

Additional details

Related works

Is published in
Journal article: 10.1038/s41597-024-02913-0 (DOI)

Software