Published January 6, 2015
| Version v1
Journal article
Open
Computational investigation of cicada aerodynamics in forward flight
Creators
- 1. Aerospace Systems Directorate, Air Force Research Laboratory, WPAFB, OH 45433, USA
- 2. Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA
- 3. Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH 45435, USA
Description
Wan, Hui, Dong, Haibo, Gai, Kuo (2015): Computational investigation of cicada aerodynamics in forward flight. Journal of The Royal Society Interface 12 (102): 1-14, DOI: 10.1098/rsif.2014.1116, URL: http://dx.doi.org/10.1098/rsif.2014.1116
Files
source.pdf
Files
(2.5 MB)
Name | Size | Download all |
---|---|---|
md5:9cbff4b3cbd0fc6977ca09535a55fe68
|
2.5 MB | Preview Download |
Linked records
Oops! Something went wrong while fetching results.
Additional details
Identifiers
- LSID
- urn:lsid:plazi.org:pub:FFBFFFB3FFD0FC69FFCA09535A55FE68
References
- 1. Sane SP. 2003 The aerodynamics of insect flight. J. Exp. Biol. 206, 4191-4208. (doi:10.1242/ jeb.00663)
- 2. Dickinson MH, Lehmann FO, Sane SP. 1999 Wing rotation and the aerodynamic basis of insect flight. Science 284, 1954 -1960. (doi:10.1126/science.284. 5422.1954)
- 3. Ellington CP. 1984 The aerodynamics of hovering insect flight. IV. Aerodynamic mechanisms. Phil. Trans. R. Soc. Lond. B 305, 79. (doi:10.1098/rstb. 1984.0052)
- 4. Ellington CP, vandenBerg C, Willmott AP, Thomas ALR. 1996 Leading-edge vortices in insect flight. Nature 384, 626 -630. (doi:10.1038/384626a0)
- 5. Lentink D, Dickinson MH. 2009 Rotational accelerations stabilize leading edge vortices on revolving fly wings. J. Exp. Biol. 212, 2705-2719. (doi:10.1242/jeb.022269)
- 6. Bomphrey RJ, Lawson NJ, Harding NJ, Taylor GK, Thomas ALR. 2005 The aerodynamics of Manduca sexta: digital particle image velocimetry analysis of the leading-edge vortex. J. Exp. Biol. 208, 1079- 1094. (doi:10.1242/jeb.01471)
- 7. Henningsson P, Bomphrey RJ. 2013 Span efficiency in hawkmoths. J. R. Soc. Interface 10, 20130099. (doi:10.1098/rsif.2013.0099)
- 8. Brodsky AK. 1991 Vortex formation in the tethered flight of the peacock butterfly inachis io L. (Lepidoptera, Nymphalidae) and some aspects of insect flight evolution. J. Exp. Biol. 161, 77- 95.
- 9. Grodnitsky DL, Morozov PP. 1993 Vortex formation during tethered flight of functionally and morphologically 2-winged insects, including evolutionary considerations on insect flight. J. Exp. Biol. 182, 11- 40.
- 10. Bomphrey RJ, Henningsson P, Michaelis D, Hollis D. 2012 Tomographic particle image velocimetry of desert locust wakes: instantaneous volumes combine to reveal hidden vortex elements and rapid wake deformation. J. R. Soc. Interface 9, 3378- 3386. (doi:10.1098/rsif.2012.0418)
- 11. Willmott AP, Ellington CP, Thomas ALR. 1997 Flow visualization and unsteady aerodynamics in the flight of the hawkmoth, Manduca sexta. Phil. Trans. R. Soc. Lond. B 352, 303- 316. (doi:10.1098/ rstb.1997.0022)
- 12. Thomas ALR, Taylor GK, Srygley RB, Nudds RL, Bomphrey RJ. 2004 Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. J. Exp. Biol. 207, 4299- 4323. (doi:10.1242/jeb.01262)
- 13. Dudley R. 2002 The biomechanics of insect flight: form, function, evolution. Princeton, NJ: Princeton University Press.
- 14. Betts CR. 1986 The kinematics of heteroptera in free flight. J. Zool. 1, 303- 315.
- 15. Riley JR, Downham MCA, Cooter RJ. 1997 Comparison of the performance of Cicadulina leafhoppers on flight mills with that to be expected in free flight. Entomol. Exp. Appl. 83, 317-322. (doi:10.1046/j.1570-7458.1997.00186.x)
- 16. Srygley RB, Thomas AL. 2002 Unconventional lift-generating mechanisms in free-flying butterflies. Nature 420, 660 -664. (doi:10.1038/ nature01223)
- 17. Dudley R. 1991 Biomechanics of flight in neotropical butterflies: aerodynamics and mechanical power requirements. J. Exp. Biol. 159, 335 -357.
- 18. Fry SN, Sayaman R, Dickinson MH. 2003 The aerodynamics of free-flight maneuvers in Drosophila. Science 300, 495-498. (doi:10.1126/ science.1081944)
- 19. Willmott AP, Ellington CP. 1997 The mechanics of flight in the hawkmoth Manduca sexta. II. Aerodynamic consequences of kinematic and morphological variation. J. Exp. Biol. 200, 2723- 2745.
- 20. Ristroph L, Bergou AJ, Guckenheimer J, Wang ZJ, Cohen I. 2011 Paddling mode of forward flight in insects. Phys. Rev. Lett. 106, 178103. (doi:10. 1103/PhysRevLett.106.178103)
- 21. Bomphrey RJ, Taylor GK, Thomas ALR. 2009 Smoke visualization of free-flying bumblebees indicates independent leading-edge vortices on each wing pair. Exp. Fluids 46, 811- 821. (doi:10.1007/ s00348-009-0631-8)
- 22. Le TQ, Truong TV, Park SH, Quang Truong T, Ko JH, Park HC, Byun D. 2013 Improvement of the aerodynamic performance by wing flexibility and elytra: hindwing interaction of a beetle during forward flight. J. R. Soc. Interface 10, 20130312. (doi:10.1098/rsif.2013.0312)
- 23. Johansson LC, Engel S, Baird E, Dacke M, Muijres FT, Hedenstrom A. 2012 Elytra boost lift, but reduce aerodynamic efficiency in flying beetles. J. R. Soc. Interface 9, 2745 -2748. (doi:10.1098/rsif. 2012.0053)
- 24. Johansson LC, Engel S, Kelber A, Heerenbrink MK, Hedenstrom A. 2013 Multiple leading edge vortices of unexpected strength in freely flying hawkmoth. Sci. Rep. 3, 3264. (doi:10.1038/ srep03264)
- 25. Dudley R, Ellington CP. 1990 Mechanics of forward flight in bumblebees 0.1. Kinematics and morphology. J. Exp. Biol. 148, 19-52.
- 26. Okamoto M, Yasuda K, Azuma A. 1996 Aerodynamic characteristics of the wings and body of a dragonfly. J. Exp. Biol. 199, 281- 294.
- 27. Ellington CP. 1999 The novel aerodynamics of insect flight: applications to micro-air vehicles. J. Exp. Biol. 202, 3439- 3448.
- 28. Grodnitsky DL. 1995 Evolution and classification of insect flight kinematics. Evolution 49, 1158 -1162. (doi:10.2307/2410440)
- 29. Tobalske BW, Warrick DR, Clark CJ, Powers DR, Hedrick TL, Hyder GA, Biewener AA. 2007 Three-dimensional kinematics of hummingbird flight. J. Exp. Biol. 210, 2368- 2382. (doi:10.1242/jeb. 005686)
- 30. Koehler C, Liang Z, Gaston Z, Wan H, Dong H. 2012 3D reconstruction and analysis of wing deformation in free-flying dragonflies. J. Exp. Biol. 215, 3018 -3027. (doi:10.1242/jeb.069005)
- 31. Catmull E, Clark J. 1978 Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Des. 10, 350-355. (doi:10.1016/ 0010-4485(78)90110-0)
- 32. Harbig RR, Sheridan J, Thompson MC. 2013 Reynolds number and aspect ratio effects on the leading-edge vortex for rotating insect wing planforms. J. Fluid Mech. 717, 166 -192. (doi:10. 1017/jfm.2012.565)
- 33. Dong H, Mittal R, Najjar FM. 2006 Wake topology and hydrodynamic performance of low aspect-ratio flapping foils. J. Fluid Mech. 556, 309- 343. (doi:10.1017/S002211200600190X)
- 34. Mittal R, Dong H, Bozkurttas M, Najjar FM, Vargas A, von Loebbecke A. 2008 Aversatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. Comput. Phys. 227, 4825-4852. (doi:10.1016/ j.jcp.2008.01.028)
- 35. Aono H, Liang F, Liu H. 2008 Near- and far-field aerodynamics in insect hovering flight: an integrated computational study. J. Exp. Biol. 211, 239 -257. (doi:10.1242/jeb.008649)
- 36. Hunt JCR, Wray AA, Moin P. 1988 Eddies, stream, and convergence zones in turbulent flows. See http://ctr.stanford.edu/Summer/201306111537.pdf.
- 37. Fry SN, Sayaman R, Dickinson MH. 2005 The aerodynamics of hovering flight in Drosophila. J. Exp. Biol. 208, 2303-2318. (doi:10.1242/ jeb.01612)
- 38. Lehmann FO, Dickinson MH. 1997 The changes in power requirements and muscle efficiency during elevated force production in the fruit fly Drosophila melanogaster. J. Exp. Biol. 200, 1133 -1143.
- 39. Sun M, Wu JH. 2003 Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion. J. Exp. Biol. 206, 3065- 3083. (doi:10.1242/jeb.00517)
- 40. Aono H, Liu H. 2006 Vortical structure and aerodynamics of hawkmoth hovering. J. Biomech. Sci. Eng. 1, 234- 245. (doi:10.1299/jbse.1.234)
- 41. Song F, Lee KL, Soh AK, Zhu F, Bai YL. 2004 Experimental studies of the material properties of the forewing of cicada (Homoptera, Cicadidae). J. Exp. Biol. 207, 3035- 3042. (doi:10.1242/ jeb.01122)
- 42. Bartholomew GA, Barnhart MC. 1984 Tracheal gases, respiratory gas-exchange, body-temperature and flight in some tropical cicadas. J. Exp. Biol. 111, 131 -144.
- 43. Sanborn AF, Heath JE, Heath MS, Noriega FG. 1995 Thermoregulation by endogenous heat-production in 2 south-American grass dwelling cicadas (Homoptera, Cicadidae, Proarna). Fla Entomol. 78, 319 -328. (doi:10.2307/3495905)
- 44. Dickinson MH, Lighton JR. 1995 Muscle efficiency and elastic storage in the flight motor of Drosophila. Science 268, 87-90. (doi:10.1126/ science.7701346)
- 45. Vogel S. 2003 Comparative biomechanics: life's physical world. Princeton, NJ: Princeton University Press.
- 46. Dudley R, Ellington CP. 1990 Mechanics of forward flight in bumblebees. 2. Quasi-steady lift and power requirements. J. Exp. Biol. 148, 53-88.
- 47. Ellington CP. 1984 The aerodynamics of hovering insect flight. VI. Lift and power requirements. Phil. Trans. R. Soc. Lond. B 305, 145- 181. (doi:10.1098/ rstb.1984.0054)
- 48. Berman GJ, Wang ZJ. 2007 Energy-minimizing kinematics in hovering insect flight. J. Fluid Mech. 582, 153-168. (doi:10.1017/S0022112007006209)
- 49. Bomphrey RJ, Taylor GK, Lawson NJ, Thomas ALR. 2006 Digital particle image velocimetry measurements of the downwash distribution of a desert locust Schistocerca gregaria. J. R. Soc. Interface 3, 311-317. (doi:10.1098/rsif.2005.0090)