Published 2023
| Version 1.0.1
Dataset
Open
PyVIPER: A fast and scalable Python package for rank-based enrichment analysis of single-cell RNASeq data
Creators
Description
Data Repository for VIPER analysis in Python. These data are used in Tutorials of the PyVIPER package. All files were generated by post-processing publicly available data from pancreatic ductal adenocarcinoma (PDAC) patients by Peng et al., 2019.
The files included are:
- B-cell-net.tsv: ARACNe3-inferred gene regulatory network for B cells in PDAC
- ductal-2-net.tsv: ARACNe3-inferred gene regulatory network for malignant ductal cell type 2 in PDAC
- fibroblast-net.tsv: ARACNe3-inferred gene regulatory network for fibroblasts in PDAC
- stellate-net.tsv: ARACNe3-inferred gene regulatory network for stellate cells in PDAC
- Tutorial_1_gExpr_fibroblast_5802.tsv.gz: gene expression signature calculated for 5802 cells (fibroblasts) used in Tutorial 1
- Tutorial_2_counts_mixed_4632.tsv.gz: UMI matrix for 4632 cells from different cellular populations used in Tutorial 2
- Tutorial_2_metadata_mixed_4632.tsv.gz: metadata for 4632 cells from different cellular populations used in Tutorial 2
- Files in .pkl format are the ARACNe3-inferred gene regulatory networks for the specific cell population in PDAC in .pkl format
Files
Files
(1.4 GB)
| Name | Size | Download all |
|---|---|---|
|
md5:a64b3c528fff7e7f880421799efdb458
|
105.7 MB | Download |
|
md5:cb7e167c4dfd49a1a631b95b0934105e
|
205.6 MB | Download |
|
md5:1fdff14a9d23cdad497cd10cc8dc30f5
|
91.5 MB | Download |
|
md5:863b5eeaa85fd503a4a5eccb2503ef45
|
177.4 MB | Download |
|
md5:3d7b41809d784aa54fd306521501d313
|
107.3 MB | Download |
|
md5:0100b34ebfc0629c3f798dfc4f14abf4
|
208.1 MB | Download |
|
md5:8178ce54afaf81b4306b7c6dc423486e
|
107.8 MB | Download |
|
md5:259132d07c99ed70d699f4ce9b1001e5
|
204.6 MB | Download |
|
md5:1688307c0365b8808655403e668b129d
|
150.5 MB | Download |
|
md5:a2116e80691bccfea63d60993075086d
|
16.5 MB | Download |
|
md5:23620b1c292c2ec9ae9c2554c250a9ff
|
30.6 kB | Download |
Additional details
References
- Alvarez, M., Shen, Y., Giorgi, F. et al. Functional characterization of somatic mutations in cancer using network-based inference of protein activity. Nat Genet 48, 838–847 (2016). https://doi.org/10.1038/ng.3593
- Griffin, A. T., Vlahos, L. J., Chiuzan, C. & Califano, A. NaRnEA: An Information Theoretic Framework for Gene Set Analysis. Entropy 25, 542 (2023). https://doi.org/10.3390/e25030542
- Peng, J., Sun, BF., Chen, CY. et al. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res 29, 725–738 (2019). https://doi.org/10.1038/s41422-019-0195-y##
- Basso, K., Margolin, A., Stolovitzky, G. et al. Reverse engineering of regulatory networks in human B cells. Nat Genet 37, 382–390 (2005). https://doi.org/10.1038/ng1532