Historical Reconstruction Dataset of Hourly Expected On-Shore Wind Generation in Japan
Creators
- 1. Waseda University
- 2. Central Research Institute of Electric Power Industry
Description
Description
This is a historical reconstruction dataset of hourly expected wind generation based on dynamically downscaled atmospheric reanalysis for assessing the spatio-temporal impact of on-shore wind in Japan.
The dataset consists of a set of netCDF files with yearly archives of reconstruction results from 1958 to 2012; hourly expected on-shore wind power potential in Japan with a spatial resolution of approximately 5 km mesh has been reconstructed from the numerical weather model reanalysis results. The expected per-unit output values at each location were calibrated using a nonparametric machine learning model that learns statistical relationships between spatial/meteorological features of target locations and actual wind farm outputs.
A convenient way to handle this dataset would be to use a tool for manipulating netCDF files, such as CDO: Climate Data Operators.
Version history
- Ver. 1.0: Released.
- Ver. 1.1: The preprocessing of the source information used for dataset preparation has changed.
Notes
Files
readme.pdf
Files
(29.2 GB)
Name | Size | Download all |
---|---|---|
md5:a558d6082702e25636f48908911a1607
|
120.9 kB | Preview Download |
md5:9ed1dfa27adbece1d63407001a184771
|
530.2 MB | Download |
md5:59889c3ef612cc104f6fdffcee906594
|
530.2 MB | Download |
md5:77c5142d86c2b3e3ab35b12b09b52632
|
531.7 MB | Download |
md5:6a4d0fe2b742ae0fee61ec822d42780b
|
530.2 MB | Download |
md5:aaa9839ca55198bc23bf9ffc14de63de
|
530.2 MB | Download |
md5:7eb16af4dd58d7a75704b4eab020f35e
|
530.3 MB | Download |
md5:ed6a4ab4abad11be8ac0c211451b3db8
|
531.7 MB | Download |
md5:40152159db4b59c47592941022fc7757
|
530.3 MB | Download |
md5:8cfdec2a100166a0a3377edd3cbd9d18
|
530.2 MB | Download |
md5:740ada50d2ef4fb6c0dfb933825acd76
|
530.3 MB | Download |
md5:48a2bef93904b97d1434a3985fe9ff48
|
531.7 MB | Download |
md5:bd3dd61b74aaec3bdb1d50689f991753
|
530.3 MB | Download |
md5:9adb9df36f59b95cc220470d6e2a5e1e
|
530.2 MB | Download |
md5:d405fa8e6aaaa9e3f1330e2c1207d827
|
530.3 MB | Download |
md5:39946de91e43323700dc9f1b2a0b4e01
|
531.5 MB | Download |
md5:03dfc43ac303302fc639d030efb81688
|
530.1 MB | Download |
md5:e85f73a80977237ee865cc7ebf9018b2
|
530.2 MB | Download |
md5:afa2e9908e7db3158c6976c634200515
|
530.2 MB | Download |
md5:b5428568f82b5c7bbaa1f09af2de05f3
|
531.6 MB | Download |
md5:4bfdd1d3028efbe7bf2240a70b5d4d77
|
530.2 MB | Download |
md5:0ca2f2997af18294d54affc3dc080f24
|
530.2 MB | Download |
md5:caa106a800f0b1c0905ac7b90d6cfd29
|
530.3 MB | Download |
md5:2de671ea0f3f6bb16f7fa16f6ff0cd47
|
531.5 MB | Download |
md5:5a761a9fced283e8f31acef430d669d6
|
530.2 MB | Download |
md5:024f118938e23c3e5064d5c2377984c4
|
530.2 MB | Download |
md5:31a8ec93091d5e85bb06193095965b61
|
530.2 MB | Download |
md5:bb2f3c12afd5c71cdd3afc0e81bdc9c9
|
531.6 MB | Download |
md5:7b2be908acd5c4d9fd95730ada8753a9
|
530.3 MB | Download |
md5:838a012808750dfae98492eaa7dbc25f
|
530.3 MB | Download |
md5:8c00af861010c1ae9f4ef7c3a061e677
|
530.3 MB | Download |
md5:e4264e37dde6163ceb08ad5d75e917c5
|
531.7 MB | Download |
md5:e8ccba6cd95d2852bf80ee3273d2941e
|
530.1 MB | Download |
md5:cfa826eb5a39c6604f90329729f3561f
|
530.2 MB | Download |
md5:5215bf5815a1aaa43123af4f7cdd82b0
|
530.3 MB | Download |
md5:6925f432d8087e07064a18d7f08da1fc
|
531.7 MB | Download |
md5:db9f3236414cbd225fedee7843d95a05
|
530.2 MB | Download |
md5:e4b83a11dce30ad9cfcb2b7bceb049a3
|
530.1 MB | Download |
md5:daf5a512573e4eadaaf71a1a3442391b
|
530.2 MB | Download |
md5:475cd69ee6e8e2d8b8aeb1a8192b4733
|
531.7 MB | Download |
md5:8d1cbd3398712616c111c401c8f5df74
|
530.2 MB | Download |
md5:6614a61248afe7e87b8dbecb2b760a19
|
530.4 MB | Download |
md5:d95d59da9b162e2077d73c86096f9a43
|
530.2 MB | Download |
md5:76873fad7ebb5ba2d2f9d313f7a52d07
|
531.6 MB | Download |
md5:6967c2183d735e2c6c108cd924c4fb9b
|
530.2 MB | Download |
md5:48467b10b6a9c1c1fd0ea1338315b194
|
530.2 MB | Download |
md5:8e9fc2fd034a0c53f9d3728ea199a2a7
|
530.2 MB | Download |
md5:4b96e3e05d2755086d35f3f059ee36e7
|
531.7 MB | Download |
md5:af1b2fb46160bacf0ddd3092c5b8effe
|
530.2 MB | Download |
md5:ff50eb8dfdbe60c1ffcbf8f27d2921d1
|
530.2 MB | Download |
md5:3423042b0b41e9fc98891e4a5835636e
|
530.3 MB | Download |
md5:ed715759de397dadc395bb669a1a8acd
|
531.7 MB | Download |
md5:e7acf13b35413f17cd8a326612a18da3
|
530.1 MB | Download |
md5:50abc5e78270040550fec63176f55ff4
|
530.2 MB | Download |
md5:9bd0f006a663e1ff6a4dcb982a3097e9
|
530.3 MB | Download |
md5:4222e5894bdedd6c344764ec32664609
|
531.5 MB | Download |
Additional details
References
- Kayaba, N. et al. (2016): Dynamical Regional Downscaling Using the JRA-55 Reanalysis (DSJRA-55). SOLA, 12, 1-5. http://doi.org/10.2151/sola.2016-001.