There is a newer version of the record available.

Published October 30, 2023 | Version v2
Dataset Open

usnistgov/UniSpec: Deep Learning for Predicting Comprehensive Peptide Fragment Ion Series

  • 1. ROR icon National Institute of Standards and Technology

Description

UniSpec is a comprehensive DL spectrum predictor that can predict the intensity of the entire HCD MS/MS fragment ion series, going beyond existing tools limited to b/y ion series. 

All datasets developed for UniSpec model are shared on Zenodo as part of the UniSpec publication, "UniSpec: Deep Learning for Predicting Comprehensive Peptide Fragment Ion Series to Improve Peptide-Spectrum Matches from Shotgun Proteomics Experiments".

This includes UniSpec datasets, downstream evaluation and analysis, and application case studies.

1. pre-processed training, evaluation and testing data for machine learning;

         UniSpec-Datasets.7z, Readme_UniSpecDatasets.txt

2. Streamlined  input datasets based on the fragmentation dictionary;

        Streamlined_inputdatasets.7z, Readme_Streamlined_inputdatasets.txt

3. Predictions on the validation and test sets;

       UniSpecPred_Validation-Test.7z, Readme_Predictons_ValidationTest.txt

4. Evaluation by comparison with Prosit;

      a. Predictions: prosit_and_unispec_predictions.7z, Readme_prosit_and_unispec_predictions.txt

      b. Cosine similarity scores: prosit_vs_unispec_CS.7z, Readme_prosit_vs_unispec_CS.txt

5. CSS for Different HCD Fragment Ion Series;

       CS_for_ion_splits.tsv

6. Application 1: PSM rescoring;

      PSM rescoring_zipfiles.7z,  PSM rescoring_readme.txt

7. Application 2: In-silico spectral library search  

      in-silico_librarysearch.7z, in-silico_librarysearch_readme.txt

 

Files

Readme_librarysearchResults.txt

Files (13.9 GB)

Name Size Download all
md5:8d8477842dcef24714117647fc171203
937.0 kB Download
md5:6d9a7a6c65d0c802f4a0edbde0085203
132.6 MB Download
md5:1b51193e2f2739f1fb8773e7634d70b9
1.2 GB Download
md5:c1910817f40ea29c134588416530eb79
27.7 MB Download
md5:c17d3562451273ac9b3a9e0c71d24736
1.3 GB Download
md5:dafb67f9b5085638fb47c3913778aaf4
1.0 kB Preview Download
md5:3fcf144672fab7e83cff1b575de43322
412 Bytes Preview Download
md5:530bf5e85ff1a3850c521500df32700b
515 Bytes Preview Download
md5:cfea5abf1e8ef2702041a954bc80b59b
327 Bytes Preview Download
md5:ed0c7206374e7822ca4ee2a3337a0db4
949 Bytes Preview Download
md5:e8fb62139726337ccfd89827579f05f1
315 Bytes Preview Download
md5:bdc7224cc92305d524224dab6d4840de
779 Bytes Preview Download
md5:d66c0b6d988f0ec51a17f1274dd0da88
928.3 MB Download
md5:93b7a99d3f89da555b1d86f779e20888
3.7 GB Download
md5:6425bd266719d5e8b2f513b557af389e
3.6 GB Download
md5:693c3ef0cb967ed17d698201c9ed2728
3.0 GB Download
md5:e1feb5ca09a2444379854ab0e8531bfa
38.9 MB Download