A 6-Year Review of the Electronic Drug Prescription System in the Republic of Türkiye
Authors/Creators
- 1. Republic of Türkiye Ministry of Health, Ankara, Türkiye.
- 2. General Directorate of Health Information Systems, Republic of Türkiye Ministry of Health, Ankara, Türkiye.
Description
Abstract
Pharmacoepidemiological studies are important for the development of health systems. The aim of this study is to examine the seasonal and branch changes of prescriptions written in the light of national data. Drug and prescription information between 01.01.2016 and 31.12.2022 analyzed retrospectively from electronic data. In addition to gender and age distribution, the specialty and hospital level at which the prescription was written were examined in temporal terms. Prescribed drugs have been classified according to Anatomical Therapeutic Chemical (ATC) codes previously created by the World Health Organization. It was determined that 1,452,128,177 prescriptions were written during the study period. These included a total of 4,602,556,489 drugs with the ATC code. The most written ATC code group was A (alimentary tract and metabolism), followed by M (musculo-skeletal system), and R (respiratory system) group drugs. In terms of specialization, the group that wrote the most prescriptions was family physicians, followed by emergency physicians, and internal medicine specialists. Examining prescription software trends is important when creating healthcare policies. Developing strategies to reduce prescription costs will contribute to the efficient use of resources and improving the quality and sustainability of health services delivery.
Özet
Farmakoepidemiyolojik çalışmalar sağlık sistemlerinin gelişimi açısından önemlidir. Bu çalışmanın amacı ulusal veriler ışığında, yazılan reçetelerin dönemsel ve uzmanlık alanlarına göre değişimlerini incelemektir. Bu amaçla, 01.01.2016 - 31.12.2022 tarihleri arasındaki ilaç ve reçete bilgileri elektronik verilerden geriye dönük olarak analiz edildi. Cinsiyet ve yaş dağılımının yanı sıra reçetenin yazıldığı uzmanlık alanı ve hastane düzeyi de zamansal açıdan incelendi. Reçete edilen ilaçlar, Dünya Sağlık Örgütü'nün daha önce oluşturduğu Anatomik Terapötik Kimyasal (ATC) kodlarına göre sınıflandırıldı. Çalışma döneminde 1.452.128.177 adet reçete yazıldığı belirlendi. Yazılan reçeteler ATC kodlu toplam 4.602.556.489 ilacı içermektedir. En çok yazılan ATC kod grubu A (sindirim sistemi ve metabolizma) olurken, bunu M (kas-iskelet sistemi) ve R (solunum sistemi) grubu ilaçlar izledi. Uzmanlık alanı açısından en fazla reçete yazan grup aile hekimleri olurken, onu acil servis hekimleri ve dahiliye uzmanları izledi. Reçete yazılımlarındaki trendleri incelemek, sağlık politikaları oluştururken önemlidir. Reçete maliyetlerini azaltacak stratejilerin geliştirilmesi, kaynakların verimli kullanımı ve sağlık hizmetleri sunumunda kalitenin artırılmasına ve sürdürülebilirliğe katkı sunacaktır.
Notes
Files
lms.2023.35.pdf
Files
(669.7 kB)
| Name | Size | Download all |
|---|---|---|
|
md5:3056b079b16b962db747d20765ad64d4
|
669.7 kB | Preview Download |
Additional details
References
- 1. European Medicines Agency (EMA), Amsterdam, Netherlands. E The European Network of Centres for Pharmacoepidemiology and Pharmacovigilance (ENCePP). Guide on Methodological Standards in Pharmacoepidemiology (Revision 8). EMA/95098/2010 Available at: https://www.encepp.eu/standards_and_guidances/documents/GuideMethodRev8.pdf [Accessed May 29, 2023].
- 2. Laugesen K, Ludvigsson JF, Schmidt M, Gissler M, Valdimarsdottir UA, Lunde A, et al. Nordic Health Registry-Based Research: A Review of Health Care Systems and Key Registries. Clin Epidemiol 2021; 13: 533-54.
- 3. Pacurariu A, Plueschke K, McGettigan P, Morales DR, Slattery J, Vogl D, et al. Electronic healthcare databases in Europe: descriptive analysis of characteristics and potential for use in medicines regulation. BMJ Open 2018; 8(9): e023090. Erratum in: BMJ Open 2019; 8(11): e023090corr1.
- 4. Webster P. Infoway calls for e-prescribing proposals. CMAJ 2016; 188(12): E273-E274.
- 5. Anderson JG. Social, ethical and legal barriers to e-health. Int J Med Inform 2007; 76(5-6): 480-3.
- 6. Gabriel M, Swain M. E-prescribing Trends in the United States. The Office of the National Coordinator for Health Information Technology, ONC Data Brief; No.18. 2014, Washington, DC.
- 7. Deetjen U. European e-prescriptions: benefits and success factors. Working Paper Series, No.5. 2016, University of Oxford.
- 8. Hellström L, Waern K, Montelius E, Astrand B, Rydberg T, Petersson G. Physicians' attitudes towards ePrescribing--evaluation of a Swedish full-scale implementation. BMC Med Inform Decis Mak 2009; 9: 37.
- 9. Birinci Ş. A Digital Opportunity for Patients to Manage Their Health: Turkey National Personal Health Record System (The e-Nabız). Balkan Med J 2023; 40(3): 215-21.
- 10. World Health Organization (WHO), Geneva, Switzerland. WHO Collaborating Centre for Drug Statistics Methodology, ATC/DDD Index 2023. Available at: https://www.whocc.no/atc_ddd_index/ [Accessed May 18, 2023]
- 11. Peterson ML. The Institute of Medicine report, "A Manpower Policy for Primary Health Care": a commentary from the American College of Physicians. Ann Intern Med 1980; 92(6): 843-51.
- 12. Ohta R, Sano C. Implementation of the Principles of Family Medicine in Modern Family Medicine Education Needing System-Specific Approaches. Cureus 2022; 14(11): e31177.
- 13. İlhan SÖ, Yıldız M, Tüzün H, Dikmen AU. Evaluation of irrational drug use of individuals over the age of 18 who applied to a university hospital. Turk J Med Sci 2022; 52(2): 484-93.
- 14. Akyon ŞH, Yılmaz TE, Akyon FÇ. Family Medicine Residents' Awareness of Rational Drug Use in Geriatric Patients and Their Need for a Web Application. Life Med Sci 2023; 2(2): 61-9.
- 15. Fares A. Factors influencing the seasonal patterns of infectious diseases. Int J Prev Med 2013; 4(2): 128-32.
- 16. Gallagher T, Lipsitch M. Postexposure Effects of Vaccines on Infectious Diseases. Epidemiol Rev 2019; 41(1): 13-27.