Published October 30, 2023 | Version CC BY-NC-ND 4.0
Journal article Open

Permeation Enhancers for Transdermal Drug Delivery: Strategies and Advancements Focusing Macromolecules

  • 1. Department of Pharmaceutics, Siksha 'O' Anusandhan University, Bhubaneswar (Odisha), India.

Contributors

Contact person:

Researcher:

  • 1. Department of Pharmaceutics, Siksha 'O' Anusandhan University, Bhubaneswar (Odisha), India.

Description

Abstract: The various transdermal drug delivery method, allows medications to cross the biological barriers and enter the bloodstream to elicit desired pharmacological response. The relevant article focuses on the numerous biological and other macromolecule-based permeation enhancers including carbohydrates, protein-peptides and lipids used in transdermal drug delivery. Though the focus of the study is on role of macromolecule, as well as their mechanisms and modes of action for efficient transdermal drug delivery, it also concentrates on the recent developments in various permeation enhancement techniques. Transdermal administration of weakly permeable medications with shorter biological half-lives typically makes use of the permeation augmentation techniques and agents, which should not have any explicit toxicological implications and incompatibility within the formulations. In this review, limelight has been given to the promising permeation enhancers of current scenario which consist of various macromolecules.

Files

F4028103623.pdf

Files (595.6 kB)

Name Size Download all
md5:a0e9328863cf6897979207f7718d9534
595.6 kB Preview Download

Additional details

Identifiers

Dates

Accepted
2023-10-15
Manuscript received on 05 September 2023 | Revised Manuscript received on 13 September 2023 | Manuscript Accepted on 15 October 2023 | Manuscript published on 30 October 2023

References

  • Brahmankar. Permeability and permeation enhancer, biophys'cutics & Ph'cokinetics-A treatise (2nd ed). (2010), 50–105.
  • Martin, A. (2005). Permeation enhancer, Phy Pharm (4th ed) (pp. 351–353, 526–527, 532, 537, 541–542).
  • Ghasemiyeh, P., & Mohammadi-Samani, S. (2020). Potential of nanoparticles as permeation enhancers and targeted delivery options for skin: Advantages and disadvantages. Drug Design, Development and Therapy, 14, 3271–3289. https://doi.org/10.2147/DDDT.S264648
  • Vanbever, R., Prausnitz, M. R., & Préat, V. (1997). Macromolecules as novel transdermal transport enhancers for skin electroporation. Pharmaceutical Research, 14(5), 638–644. https://doi.org/10.1023/A:1012161313701
  • Pereira, R., Silva, S. G., Pinheiro, M., Reis, S., & Vale, M. L. D. (2021, May 7). Current status of amino acid-based permeation enhancers in transdermal drug delivery. Membranes, 11(5), 343. https://doi.org/10.3390/membranes11050343, PubMed: 34067194, PubMed Central: PMC8151591
  • Zhu, Q., Chen, Z., Paul, P. K., Lu, Y., Wu, W., & Qi, J. (2021, August 1). Oral delivery of proteins and peptides: Challenges, status quo and future perspectives. Acta Pharmaceutica Sinica. B, 11(8), 2416–2448. https://doi.org/10.1016/j.apsb.2021.04.001
  • Aqil, M., Ahad, A., Sultana, Y., & Ali, A. (2007). status of terpenes as skin Penetration enhancers. Drug Discovery Today, 12(23–24), 1061–1067. https://doi.org/10.1016/j.drudis.2007.09.001
  • Biruss, B., Khaliq, H., & Valenta, C. (2007). Evaluation of an Eucalyptus oil containing topical drug delivery system for selected steroid hormones. International Journal of Pharmacy, 328, 142–151.
  • Vanbever, R., Prausnitz, M. R., & Préat, V. (1997). Macromolecules as novel transdermal transport enhancers for skin electroporation. Pharmaceutical Research, 14(5), 638–644. https://doi.org/10.1023/A:1012161313701
  • Roy. (2017). Permeation enhancers: A major breakthrough in drug delivery technology. International Journal of Pharmaceutical Sciences and Research, 1001–1011.
  • Park, E. S., Chang, S. J., Rhee, Y. S., & Chi, S. C. (2001, January 1). Effects of adhesives and permeation enhancers on the skin permeation of captopril. Drug Development and Industrial Pharmacy, 27(9), 975–980. https://doi.org/10.1081/ddc-100107679
  • Qi, Q. M., Duffy, M., Curreri, A. M., Balkaran, J. P. R., Tanner, E. E. L., & Mitragotri, S. (2020, November). Comparison of ionic liquids and chemical permeation enhancers for transdermal drug delivery. Advanced Functional Materials, 30(45), 2004257. https://doi.org/10.1002/adfm.202004257
  • Single, V., Saini, S., Singh, G., Rana, A. C., & Vjoshi, B. (2011). Penetration enhancers: A novel strategy for enhancing transdermal drug delivery. International Research Journal of Pharmacy, 2(12), 32–36.
  • Doh, H. J., Jung, Y., Balakrishnan, P., Cho, H. J., & Kim, D. D. (2013, January 1). A novel lipid nanoemulsion system for improved permeation of granisetron. Colloids and Surfaces. B, Biointerfaces, 101, 475–480. https://doi.org/10.1016/j.colsurfb.2012.07.019
  • Roy, N., Agrawal, M., Chaudhary, S., Tirkey, V., Dhwaj, A., & Mishra, N.. review article on permeation enhancers: A major breakthrough I drug delivery technology. Department of biomedical engineering. IIIT. (2012).
  • Sebastiani, P., Nicoli, S. N. P., & Santi, P. (2005, March). Effect of lactic acid and iontophoresis on drug permeation across rabbit ear skin. International Journal of Pharmaceutics, 292(1–2), 119–126. https://doi.org/10.1016/j.ijpharm.2004.11.038
  • Sinha, V. R., & Kaur, M. P. (2000, January 1). Permeation enhancers for transdermal drug delivery. Drug Development and Industrial Pharmacy, 26(11), 1131–1140. https://doi.org/10.1081/ddc-100100984
  • Barry, B. W. (1988, December). Action of skin penetration enhancers-the Lipid Protein partitioning theory. International Journal of Cosmetic Science, 10(6), 281–293. https://doi.org/10.1111/j.1467-2494.1988.tb00028.x, PubMed: 19456942
  • Ivaturi, V. D., & Kim, S. K. (2009, October). Enhanced permeation of methotrexate in vitro by ion pair formation with L-arginine. Journal of Pharmaceutical Sciences, 98(10), 3633–3639. https://doi.org/10.1002/jps.21663
  • Whitehead, K., Karr, N., & Mitragotri, S. (2008, August). Safe and effective permeation enhancers for oral drug delivery. Pharmaceutical Research, 25(8), 1782–1788. https://doi.org/10.1007/s11095-007-9488-9
  • Másson, M., Loftsson, T., Másson, G., & Stefánsson, E. (1999, May 1). Cyclodextrins as permeation enhancers: Some theoretical evaluations and in vitro testing. Journal of Controlled Release, 59(1), 107–118. https://doi.org/10.1016/s0168-3659(98)00182-5
  • Sohi, H., Ahuja, A., Ahmad, F. J., & Khar, R. K. (2010, March 1). Critical evaluation of permeation enhancers for oral mucosal drug delivery. Drug Development and Industrial Pharmacy, 36(3), 254–282. https://doi.org/10.1080/03639040903117348
  • Figueiras, A., Hombach, J., Veiga, F., & Bernkop-Schnürch, A. B. (2009, February). In vitro evaluation of natural and methylated cyclodextrins as buccal permeation enhancing system for omeprazole delivery. European Journal of Pharmaceutics and Biopharmaceutics, 71(2), 339–345. https://doi.org/10.1016/j.ejpb.2008.08.016
  • Rajan, R., & Vasudevan, D. T. (2012, April). Effect of permeation enhancers on the penetration mechanism of transfersomal gel of ketoconazole. Journal of Advanced Pharmaceutical Technology and Research, 3(2), 112–116. https://doi.org/10.4103/2231-4040.97286
  • Hornof, M. D., & Bernkop-Schnürch, A. B. (2002, December). In vitro evaluation of the permeation enhancing effect of polycarbophil–cysteine conjugates on the cornea of rabbits. Journal of Pharmaceutical Sciences, 91(12), 2588–2592. https://doi.org/10.1002/jps.10258
  • Abruzzo, A., Armenise, N., Bigucci, F., Cerchiara, T., Gösser, M. B., Samorì, C., Galletti, P., Tagliavini, E., Brown, D. M., Johnston, H. J., Fernandes, T. F., & Luppi, B. (2017, May). Surfactants from itaconic acid: Toxicity to HaCaT keratinocytes in vitro, micellarsolubilization, and skin permeation enhancement of hydrocortisone. International Journal of Pharmaceutics, 524(1–2), 9–15. https://doi.org/10.1016/j.ijpharm.2017.03.056
  • Bernkop-Schnürch, A. B., Guggi, D., & Pinter, Y. (2004, January). Thiolatedchitosans development and in vitro evaluation of a mucoadhesive, permeation enhancing oral drug delivery system. Journal of Controlled Release, 94(1), 177–186. https://doi.org/10.1016/j.jconrel.2003.10.005
  • Artusi, M., Nicoli, S., Colombo, P., Bettini, R., Sacchi, A., & Santi, P. (2004, October). Effect of chemical enhancers and iontophoresis on thiocolchicoside permeation across rabbit and human skin in vitro. Journal of Pharmaceutical Sciences, 93(10), 2431–2438. https://doi.org/10.1002/jps.20152
  • Fangab, J. Y., Fangc, C. L., Hongd, C. T., Chenab, H. Y., Lina, T. Y., & Mei, H. (2001, January). Capsaicin and nonivamide as novel skin permeation enhancers for indomethacin. European Journal of Pharmaceutics and Biopharmaceutics, 12, 195–203.
  • Vaddi, H. K., Wang, L. Z., Ho, P. C., & Chan, S. Y. (2001, January 16). Effect of some enhancers on the permeation of haloperidol through rat skin in vitro. International Journal of Pharmaceutics, 212(2), 247–255. https://doi.org/10.1016/s0378-5173(00)00616-5
  • Chen, J., Jiang, Q. D., Wu, Y. M., Liu, P., Yao, J. H., Lu, Q., Zhang, H., & Duan, J. A. (2015, October 7). Potential of essential oils as penetration enhancers for transdermal administration of ibuprofen to treat dysmenorrhoea. Molecules. Mol, 20(10), 18219–18236. https://doi.org/10.3390/molecules201018219
  • Ghasemiyeh, P., & Mohammadi-Samani, S. (2020, August 12). Potential of nanoparticles as permeation enhancers and targeted delivery options for skin: Advantages and disadvantages. Drug Design, Development and Therapy, 14, 3271–3289. https://doi.org/10.2147/DDDT.S264648
  • Maher, S., Brayden, D. J., Casettari, L., & Illum, L. (2019). Application of permeation enhancers in oral delivery of macromolecules: An update. Pharmaceutics, 11(1), 41. https://doi.org/10.3390/pharmaceutics11010041
  • Kim, N. J., Harris, A., Elghouche, Gama, Siesky, W., & B. (2016). Ocular permeation enhancers in nanobiomaterials for ophthalmic drug delivery. Springer.
  • Patil, U. K., & Saraogi, R. (2014, July). Natural products as potential drug permeation enhancer in transdermal drug delivery system. Archives of Dermatological Research, 306(5), 419–426. https://doi.org/10.1007/s00403-014-1445-y
  • Nan, L., Liu, C., Li, Q., Wan, X., Guo, J., Quan, P., & Fang, L. (2018, November). Investigation of the enhancement effect of the natural transdermal permeation enhancers from. var, L.L.; angustum; Busch, N. Mechanistic insight based on interaction among drug, enhancers and skin. European Journal of Pharmacology, 124, 105–113.
  • P K, L., K, S., D, P., B, V., & Chennuri, A. (2017). Oils as penetration enhancers for improved transdermal drug delivery: A review. International Research Journal of Pharmacy, 8(4), 9–17. https://doi.org/10.7897/2230-8407.080440
  • Sharma, K., Mittal, A., & Chauhan, N. (2015). Aloe vera as Penetration Enhancer. International Journal of Drug Development and Research
  • Chauhan, S. B. (2017). Penetration enhancement techniques. Journal of Applied Pharmacy, 09(2), 2. https://doi.org/10.21065/1920-4159.1000235
  • Haq, A., & Michniak-Kohn, B. (2018). Effects of solvents and penetration enhancers on transdermal delivery of thymoquinone: Permeability and skin deposition study. Drug Delivery, 25(1), 1943–1949. https://doi.org/10.1080/10717544.2018.1523256
  • Stefanic, M., Ward, K., Tawfik, H., Seemann, R., Baulin, V., Guo, Y., Fleury, J. B., & Drouet, C. (2017, September). Apatite nanoparticles strongly improve red blood cell cryopreservation by mediating trehalose delivery via enhanced membrane permeation. Biomaterials, 140, 138–149. https://doi.org/10.1016/j.biomaterials.2017.06.018
  • Peña-Juárez, M. C., Guadarrama-Escobar, O. R., & Escobar-Chávez, J. J. (2022). Transdermal delivery systems for biomolecules. Journal of Pharmaceutical Innovation, 17(2), 319–332. https://doi.org/10.1007/s12247-020-09525-2
  • Pereira, R., Silva, S. G., Pinheiro, M., Reis, S., & Vale, M. L. D. (2021, May 7). Current status of amino acid-based permeation enhancers in transdermal drug delivery. Membranes, 11(5), 343. https://doi.org/10.3390/membranes11050343, PubMed: 34067194, PubMed Central: PMC8151591
  • Ameen, D., & Michniak-Kohn, B. (2017). Transdermal delivery of dimethyl fumarate for Alzheimer's disease: Effect of penetration enhancers. International Journal of Pharmaceutics, 529(1–2), 465–473. https://doi.org/10.1016/j.ijpharm.2017.07.031
  • Zhu, Q., Chen, Z., Paul, P. K., Lu, Y., Wu, W., & Qi, J. (2021, August 1). Oral delivery of proteins and peptides: Challenges, status quo and future perspectives. Acta Pharmaceutica Sinica. B, 11(8), 2416–2448. https://doi.org/10.1016/j.apsb.2021.04.001
  • Aqil, M., Ahad, A., Sultana, Y., & Ali, A. (2007). status of terpenes as skin Penetration enhancers. Drug Discovery Today, 12(23–24), 1061–1067. https://doi.org/10.1016/j.drudis.2007.09.001
  • Biruss, B., Khaliq, H., & Valenta, C. (2007). Evaluation of an Eucalyptus oil containing topical drug delivery system for selected steroid hormones. International Journal of Pharmacy, 328, 142–151.
  • Gonçalves, R. F. S., Martins, J. T., Duarte, C. M. M., Vicente, A. A., & Pinheiro, A. C. (2018). Advances in nutraceutical delivery systems: From formulation design for bioavailability enhancement to efficacy and safety evaluation. Trends in Food Science and Technology, 78, 270–291. https://doi.org/10.1016/j.tifs.2018.06.011
  • Nawaz, A., & Wong, T. W. (2017). Microwave as skin permeation enhancer for transdermal drug delivery of chitosan-5-fluorouracil nanoparticles. Carbohydrate Polymers, 157, 906–919. https://doi.org/10.1016/j.carbpol.2016.09.080
  • Premarathne, E. P., Karunaratne, D. N., & Perera, A. D. Carbohydrate lyotropic liquid crystals materials as stabilizer and permeation enhancer for microemulsion based. Drug Delivery System.
  • Jain, A. K., Khar, R. K., Ahmed, F. J., & Diwan, P. V. (2008). Effective insulin delivery using starch nanoparticles as a potential trans-nasal mucoadhesive carrier. European Journal of Pharmaceutics and Biopharmaceutics, 69(2), 426–435. https://doi.org/10.1016/j.ejpb.2007.12.001
  • Saboktakin, M. R., Akhyari, S., & Nasirov, F. A. (2014). Synthesis and characterization of modified starch/polybutadiene as novel transdermal Drug Delivery System. International Journal of Biological Macromolecules, 69, 442–446. https://doi.org/10.1016/j.ijbiomac.2014.05.062
  • Liston, L. S., Rivas, P. L., Sakdiset, P., See, G. L., & Arce, F. (2022). Chemical permeation enhancers for topically-applied vitamin C and its derivatives: A systematic review. Cosmetics, 9(4), 85. https://doi.org/10.3390/cosmetics9040085
  • Muankaew, C., & Loftsson, T. (2018). Cyclodextrin-based formulations: A non-invasive platform for targeted drug delivery. Basic and Clinical Pharmacology and Toxicology, 122(1), 46–55. https://doi.org/10.1111/bcpt.12917
  • Sahu, K., Kaurav, M., & Pandey, R. S. (2017). Protease loaded permeation enhancer liposomes for treatment of skin fibrosis arisen from second degree burn. Biomedicine and Pharmacotherapy, 94, 747–757. https://doi.org/10.1016/j.biopha.2017.07.141
  • Vora, L. K., Courtenay, A. J., Tekko, I. A., Larrañeta, E., & Donnelly, R. F. (2020). Pullulan-based dissolving microneedle arrays for enhanced transdermal delivery of small and large biomolecules. International Journal of Biological Macromolecules, 146, 290–298. https://doi.org/10.1016/j.ijbiomac.2019.12.184
  • Maher, S., Mrsny, R. J., & Brayden, D. J. (2016, November 15). Intestinal permeation enhancers for oral peptide delivery. Advanced Drug Delivery Reviews, 106(B), 277–319. https://doi.org/10.1016/j.addr.2016.06.005
  • Cilek, A., Celebi, N., Tirnaksiz, F., & Tay, A. (2005). A lecithin-based microemulsion of rh-insulin with aprotinin for oral administration: Investigation of hypoglycemic effects in nondiabetic and STZ-induced diabetic rats. International Journal of Pharmaceutics, 298(1), 176–185. https://doi.org/10.1016/j.ijpharm.2005.04.016
  • Wang, T., Wang, N., Hao, A., He, X., Li, T., & Deng, Y. (2010). Lyophilization of water-in-oil emulsions to prepare phospholipid-based anhydrous reverse micelles for oral peptide delivery. European Journal of Pharmaceutical Sciences, 39(5), 373–379. https://doi.org/10.1016/j.ejps.2010.01.006
  • Tuvia, S., Pelled, D., Marom, K., Salama, P., Levin-Arama, M., Karmeli, I., Idelson, G. H., Landau, I., & Mamluk, R. (2014). A novel suspension formulation enhances intestinal absorption of macromolecules via transient and reversible transport mechanisms. Pharmaceutical Research, 31(8), 2010–2021. https://doi.org/10.1007/s11095-014-1303-9