Published October 30, 2023 | Version CC BY-NC-ND 4.0
Journal article Open

Transforming Organizational Development with AI: Navigating Change and Innovation for Success

Description

Abstract: Effective change management emerges as a deciding element for an organization's survival and success in the changing terrain of today's fiercely competitive business climate. The variety of change management theories and approaches that are currently available, however, paints a complicated picture that is plagued by inconsistencies, a lack of strong empirical support, and unproven assumptions about contemporary organizational dynamics. This essay seeks to set the basis for a fresh paradigm for effective change administration by critically analyzing popular change management ideas. The gap between theory and practice is addressed in the paper, which concludes with suggestions for more research. In parallel, artificial intelligence (AI) has made incredible progress, giving rise to computers that mimic human autonomy and cognition. Industry-wide excitement has been sparked by the enthusiasm among academics, executives, and the general public, which has resulted in significant investments in utilizing AI's potential through creative business models. However, the lack of thorough academic guidance forces managers to struggle with AI integration issues, increasing the risk of project failure. An in-depth analysis of AI's complexities and its function as a spark for revolutionary business model innovation is provided in this article. A thorough literature assessment, which involves sifting through a sizable library of published works, combines up-to-date information on how AI is affecting the development of new business models. The findings come together to form a roadmap for seamless AI integration that includes four steps: understanding the fundamentals of AI and the skills needed for digital transformation, understanding current business models and their innovation potential, nurturing key proficiencies for AI assimilation, and gaining organizational acceptance while developing internal competencies. This article combines the fields of organizational change management and AI-driven business model innovation with ease, providing a thorough explanation to assist businesses in undergoing a successful transformation and innovation. These disciplines' confluence offers a practical vantage point for successfully adapting to, thriving in, and profiting within a dynamic business environment. Artificial intelligence (AI), a massively disruptive force that is altering international businesses, is at the vanguard of this revolution. The ability of AI to make decisions automatically, based on data analysis and observation, opens up hitherto untapped possibilities for value creation and competitive dominance, with broad consequences spanning several industries. With its quick scaling, ongoing improvement, and self-learning capabilities, this evolutionary invention functions as an agile capital-labor hybrid. Significantly, AI's architecture serves as the cornerstone for data-driven decision support by deftly sifting through large and complicated datasets to extract insights. Thus, the symbiotic marriage of organizational change management and AI-driven business model innovation gives a thorough narrative, directing businesses towards not just surviving, but thriving in an ever-evolving business environment. It is underlined how business models (BMs) interact with technology to affect how well business's function, underlining the need of taking BMs into account while using AI. Business model innovation (BMI) that AI unlocks may improve goods, streamline processes, and save costs. However, there is a void between technological improvements and their operationalization via BMs. Successful AI integration depends on a well-structured BM, which promotes agility and makes the most of technological resources. BMI is accelerated by AI, which reshapes sectors via innovation. Although interest in AI is high, strategic, cultural, and technological constraints sometimes prevent large investments from producing positive economic results. To fully utilize AI's capabilities, structured BMs are required. Despite an increase in research, there is still little cohesive information about the business uses of AI. In an effort to close this gap, we examine implementation-related AI problems. Analyzing AI-driven BM transformation and risk management is aided by a study on BMI and digital transformation at the same time. The purpose of this study is to further our understanding of AI-driven business model innovation and to provide a useful framework to help practitioners navigate the potential and difficulties of AI implementation. The suggested roadmap aims to identify current knowledge gaps and future research initiatives.

Files

A42821013123.pdf

Files (1.1 MB)

Name Size Download all
md5:5227c36685cebf37ae1141f3dffc8868
1.1 MB Preview Download

Additional details

Identifiers

Dates

Accepted
2023-10-15
Manuscript received on 15 August 2023 | Revised Manuscript received on 28 August 2023 | Manuscript Accepted on 15 October 2023 | Manuscript published on 30 October 2023

References

  • Adner, R., Puranam, P., & Zhu, F. (2019). What is different about digital strategy? From quantitative to qualitative change. Strategy Science, 4(4), 253-261. https://doi.org/10.1287/stsc.2019.0099
  • Ahmad, T., Zhang, D., Huang, C., Zhang, H., Dai, N., Song, Y., & Chen, H. (2021). Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities. Journal of Cleaner Production, 289, 125834. https://doi.org/10.1016/j.jclepro.2021.125834
  • Akpan, I. J., Soopramanien, D., & Kwak, D. H. (2021). Cutting-edge technologies for small business and innovation in the era of COVID-19 global health pandemic. Journal of Small Business & Entrepreneurship, 33(6), 607-617. https://doi.org/10.1080/08276331.2020.1799294
  • Akter, S., Michael, K., Uddin, M. R., McCarthy, G., & Rahman, M. (2022). Transforming business using digital innovations: The application of AI, blockchain, cloud and data analytics. Annals of Operations Research, 1-33. https://doi.org/10.1007/s10479-020-03620-w
  • Allal-Chérif, O., Simón-Moya, V., & Ballester, A. C. C. (2021). Intelligent purchasing: How artificial intelligence can redefine the purchasing function. Journal of Business Research, 124, 69-76. https://doi.org/10.1016/j.jbusres.2020.11.050
  • Ansari, M. F., Dash, B., Sharma, P., & Yathiraju, N. (2022). The Impact and Limitations of Artificial Intelligence in Cybersecurity: A Literature Review. International Journal of Advanced Research in Computer and Communication Engineering. https://doi.org/10.17148/IJARCCE.2022.11912
  • Bag, S., Gupta, S., Kumar, A., & Sivarajah, U. (2021). An integrated artificial intelligence framework for knowledge creation and B2B marketing rational decision making for improving firm performance. Industrial marketing management, 92, 178-189. https://doi.org/10.1016/j.indmarman.2020.12.001
  • Bag, S., Pretorius, J. H. C., Gupta, S., & Dwivedi, Y. K. (2021). Role of institutional pressures and resources in the adoption of big data analytics powered artificial intelligence, sustainable manufacturing practices and circular economy capabilities. Technological Forecasting and Social Change, 163, 120420. https://doi.org/10.1016/j.techfore.2020.120420
  • Beerbaum, D. O. (2022). Artificial intelligence ethics taxonomy-robotic process automation (RPA) as business case. Available at SSRN 4165048. https://doi.org/10.2139/ssrn.4165048
  • The impact of big data analytics and artificial intelligence on green supply chain process integration and hospital environmental performance. Technological forecasting and social change, 165, 120557. https://doi.org/10.1016/j.techfore.2020.120557
  • Betz, U. A., Betz, F., Kim, R., Monks, B., & Phillips, F. (2019). Surveying the future of science, technology and business–A 35 year perspective. Technological Forecasting and Social Change, 144, 137-147. https://doi.org/10.1016/j.techfore.2019.04.005
  • Bharadiya, J. P. (2022). Driving Business Growth with Artificial Intelligence and Business Intelligence. INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 6(4), 28-44.
  • Bhavsar, K., Shah, V., & Gopalan, S. (2019). Business Process Reengineering: A Scope of Automation in Software Project Management Using Artificial Intelligence. International Journal of Engineering and Advanced Technology (IJEAT), 9(2), 3589-3595. https://doi.org/10.35940/ijeat.B2640.129219
  • Cam, A., Chui, M., & Hall, B. (2019). Global AI Survey: AI proves its worth, but few scale impact.
  • Chakraborti, T., Agarwal, S., Khazaeni, Y., Rizk, Y., & Isahagian, V. (2020). D3BA: a tool for optimizing business processes using non-deterministic planning. In Business Process Management Workshops: BPM 2020 International Workshops, Seville, Spain, September 13–18, 2020, Revised Selected Papers 18 (pp. 181-193). Springer International Publishing. https://doi.org/10.1007/978-3-030-66498-5_14
  • Understanding AI adoption in manufacturing and production firms using an integrated TAM-TOE model. Technological Forecasting and Social Change, 170, 120880. https://doi.org/10.1016/j.techfore.2021.120880
  • Implementing a digital strategy: Learning from the experience of three digital transformation projects. California Management Review, 62(4), 37-56. https://doi.org/10.1177/0008125620934864
  • Dauvergne, P. (2020). AI in the Wild: Sustainability in the Age of Artificial Intelligence. MIT Press. https://doi.org/10.7551/mitpress/12350.001.0001
  • De Bruyn, A., Viswanathan, V., Beh, Y. S., Brock, J. K. U., & Von Wangenheim, F. (2020). Artificial intelligence and marketing: Pitfalls and opportunities. Journal of Interactive Marketing, 51(1), 91-105. https://doi.org/10.1016/j.intmar.2020.04.007
  • Delanoy, N., & Kasztelnik, K. (2020). Business Open Big Data Analytics to Support Innovative Leadership Decision in Canada. https://doi.org/10.21272/bel.4(2).56-74.2020
  • Dhamija, P., & Bag, S. (2020). Role of artificial intelligence in operations environment: a review and bibliometric analysis. The TQM Journal, 32(4), 869-896. https://doi.org/10.1108/TQM-10-2019-0243
  • Artificial intelligence in the agri-food system: Rethinking sustainable business models in the COVID-19 scenario. Sustainability, 12(12), 4851. https://doi.org/10.3390/su12124851
  • Dora, M., Kumar, A., Mangla, S. K., Pant, A., & Kamal, M. M. (2022). Critical success factors influencing artificial intelligence adoption in food supply chains. International Journal of Production Research, 60(14), 4621-4640. https://doi.org/10.1080/00207543.2021.1959665
  • Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data–evolution, challenges and research agenda. International journal of information management, 48, 63-71. https://doi.org/10.1016/j.ijinfomgt.2019.01.021
  • Dubey, R., Gunasekaran, A., Childe, S. J., Bryde, D. J., Giannakis, M., Foropon, C., ... & Hazen, B. T. (2020). Big data analytics and artificial intelligence pathway to operational performance under the effects of entrepreneurial orientation and environmental dynamism: A study of manufacturing organisations. International journal of production economics, 226, 107599. https://doi.org/10.1016/j.ijpe.2019.107599
  • Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., ... & Williams, M. D. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002
  • Fountaine, T., McCarthy, B., & Saleh, T. (2019). Building the AI-powered organization. Harvard Business Review, 97(4), 62-73.
  • Garbuio, M., & Lin, N. (2019). Artificial intelligence as a growth engine for health care startups: Emerging business models. California Management Review, 61(2), 59-83. https://doi.org/10.1177/0008125618811931
  • Gebauer, H., Arzt, A., Kohtamäki, M., Lamprecht, C., Parida, V., Witell, L., & Wortmann, F. (2020). How to convert digital offerings into revenue enhancement–Conceptualizing business model dynamics through explorative case studies. Industrial Marketing Management, 91, 429-441. https://doi.org/10.1016/j.indmarman.2020.10.006
  • & Uhlig, S. (2022). AI for next generation computing: Emerging trends and future directions. Internet of Things, 19, 100514. https://doi.org/10.1016/j.iot.2022.100514
  • Grab, B., Olaru, M., & Gavril, R. M. (2019). The impact of digital transformation on strategic business management. Ecoforum Journal, 8(1).
  • Hanelt, A., Bohnsack, R., Marz, D., & Antunes Marante, C. (2021). A systematic review of the literature on digital transformation: Insights and implications for strategy and organizational change. Journal of Management Studies, 58(5), 1159-1197. https://doi.org/10.1111/joms.12639
  • Huynh, T. L. D., Hille, E., & Nasir, M. A. (2020). Diversification in the age of the 4th industrial revolution: The role of artificial intelligence, green bonds and cryptocurrencies. Technological Forecasting and Social Change, 159, 120188. https://doi.org/10.1016/j.techfore.2020.120188
  • Johnson, K. B., Wei, W. Q., Weeraratne, D., Frisse, M. E., Misulis, K., Rhee, K., ... & Snowdon, J. L. (2021). Precision medicine, AI, and the future of personalized health care. Clinical and translational science, 14(1), 86-93. https://doi.org/10.1111/cts.12884
  • Kaplan, A., & Haenlein, M. (2020). Rulers of the world, unite! The challenges and opportunities of artificial intelligence. Business Horizons, 63(1), 37-50. https://doi.org/10.1016/j.bushor.2019.09.003
  • Kumar, V., Rajan, B., Venkatesan, R., & Lecinski, J. (2019). Understanding the role of artificial intelligence in personalized engagement marketing. California Management Review, 61(4), 135-155. https://doi.org/10.1177/0008125619859317
  • Küpper, D., Knizek, C., Ryeson, D., & Noecker, J. (2019). Quality 4.0 takes more than technology. Boston Consulting Group (BCG), 1-14.
  • Lanzolla, G., Lorenz, A., Miron-Spektor, E., Schilling, M., Solinas, G., & Tucci, C. L. (2020). Digital transformation: What is new if anything? Emerging patterns and management research. Academy of Management Discoveries, 6(3), 341-350.
  • Lee, J., Suh, T., Roy, D., & Baucus, M. (2019). Emerging technology and business model innovation: the case of artificial intelligence. Journal of Open Innovation: Technology, Market, and Complexity, 5(3), 44. https://doi.org/10.3390/joitmc5030044
  • Medeiros, M. M. D., Hoppen, N., & Maçada, A. C. G. (2020). Data science for business: Benefits, challenges and opportunities. The Bottom Line, 33(2), 149-163. https://doi.org/10.1108/BL-12-2019-0132
  • Melnychenko, O. (2020). Is artificial intelligence ready to assess an enterprise's financial security?. Journal of Risk and Financial Management, 13(9), 191. https://doi.org/10.3390/jrfm13090191
  • Metcalf, L., Askay, D. A., & Rosenberg, L. B. (2019). Keeping humans in the loop: pooling knowledge through artificial swarm intelligence to improve business decision making. California management review, 61(4), 84-109. https://doi.org/10.1177/0008125619862256
  • Misra, N. N., Dixit, Y., Al-Mallahi, A., Bhullar, M. S., Upadhyay, R., & Martynenko, A. (2020). IoT, big data, and artificial intelligence in agriculture and food industry. IEEE Internet of things Journal, 9(9), 6305-6324. https://doi.org/10.1109/JIOT.2020.2998584
  • Munoko, I., Brown-Liburd, H. L., & Vasarhelyi, M. (2020). The ethical implications of using artificial intelligence in auditing. Journal of Business Ethics, 167, 209-234. https://doi.org/10.1007/s10551-019-04407-1
  • Obschonka, M., & Audretsch, D. B. (2020). Artificial intelligence and big data in entrepreneurship: a new era has begun. Small Business Economics, 55, 529-539. https://doi.org/10.1007/s11187-019-00202-4
  • Pandian, D. A. P. (2019). Artificial intelligence application in smart warehousing environment for automated logistics. Journal of Artificial Intelligence and Capsule Networks, 1(2), 63-72. https://doi.org/10.36548/jaicn.2019.2.002
  • Pasmore, W., Winby, S., Mohrman, S. A., & Vanasse, R. (2019). Reflections: sociotechnical systems design and organization change. Journal of Change Management, 19(2), 67-85. https://doi.org/10.1080/14697017.2018.1553761
  • Raisch, S., & Krakowski, S. (2021). Artificial intelligence and management: The automation–augmentation paradox. Academy of management review, 46(1), 192-210. https://doi.org/10.5465/amr.2018.0072
  • Robotic process automation and artificial intelligence in industry 4.0–a literature review. Procedia Computer Science, 181, 51-58. https://doi.org/10.1016/j.procs.2021.01.104
  • Roselli, D., Matthews, J., & Talagala, N. (2019, May). Managing bias in AI. In Companion Proceedings of The 2019 World Wide Web Conference (pp. 539-544). https://doi.org/10.1145/3308560.3317590
  • Schneider, J., Abraham, R., Meske, C., & Vom Brocke, J. (2023). Artificial intelligence governance for businesses. Information Systems Management, 40(3), 229-249. https://doi.org/10.1080/10580530.2022.2085825
  • Shneiderman, B. (2020). Human-centered artificial intelligence: Three fresh ideas. AIS Transactions on Human-Computer Interaction, 12(3), 109-124. https://doi.org/10.17705/1thci.00131
  • Shrestha, Y. R., Ben-Menahem, S. M., & Von Krogh, G. (2019). Organizational decision-making structures in the age of artificial intelligence. California management review, 61(4), 66-83. https://doi.org/10.1177/0008125619862257
  • Managing change with and through blockchain in accountancy organizations: A systematic literature review. Journal of Organizational Change Management, 34(2), 477-506. https://doi.org/10.1108/JOCM-10-2020-0302
  • Trad, A. (2021). The business transformation enterprise architecture framework for innovation: The role of artificial intelligence in the global business education (RAIGBE). The Business & Management Review, 12(1), 82-97. https://doi.org/10.24052/BMR/V12NU01/ART-08
  • Innovation and design in the age of artificial intelligence. Journal of Product Innovation Management, 37(3), 212-227. https://doi.org/10.1111/jpim.12523
  • The evolving role of artificial intelligence in marketing: A review and research agenda. Journal of Business Research, 128, 187-203. https://doi.org/10.1016/j.jbusres.2021.01.055
  • Wamba-Taguimdje, S. L., Fosso Wamba, S., Kala Kamdjoug, J. R., & Tchatchouang Wanko, C. E. (2020). Influence of artificial intelligence (AI) on firm performance: the business value of AI-based transformation projects. Business Process Management Journal, 26(7), 1893-1924. https://doi.org/10.1108/BPMJ-10-2019-0411
  • Yigitcanlar, T., & Cugurullo, F. (2020). The sustainability of artificial intelligence: An urbanistic viewpoint from the lens of smart and sustainable cities. Sustainability, 12(20), 8548. https://doi.org/10.3390/su12208548