Published April 28, 2023 | Version v1
Journal article Open

The Effects of SARS-CoV-2 Pandemic on the Distribution of Secondary Bacterial Pneumonia Agents and Antibiotic Resistance Profile in Intensive Care Units

  • 1. Department of Medical Microbiology (Laboratory), Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Türkiye.

Description

Özet

Dünya Sağlık Örgütü'nün 11 Mart 2020'de COVID-19'u (Coronavirus Disease 2019) pandemi olarak ilan etmesinden günümüze, SARS-CoV-2 enfeksiyonları dünya genelinde yüksek oranlarda morbidite ve mortaliteye neden olmuştur. Pnömoni gibi sekonder bakteriyel enfeksiyonların tabloya eklenmesi, hastalığın daha mortal seyretmesine yol açmıştır. Bu durum gerek proflaktik gerekse tedavi amaçlı antibiyotik kullanımında artışa yol açmış ve antibiyotik direnç oranlarının artması ve çoklu ilaç dirençli suşlar konusunda endişelere neden olmuştur. Bu çalışmaya, Nisan 2020 - Mayıs 2022 tarihleri arasında hastanemiz yoğun bakım ünitelerinde (YBÜ) takip edilen ve polimeraz zincir reaksiyonu (PCR) ile doğrulanmış tanısı olan 679 COVID-19 hastası (Grup 1) ile pandemi döneminde anestezi YBÜ'de izlenen ancak SARS-CoV-2 PCR test sonuçları negatif olan 366 hasta (Grup 2) dahil edildi. SARS-CoV-2 enfeksiyonunun etken dağılımı ve antibiyotik direnç paternlerindeki değişimler üzerine olası etkisi gözlemlemek amacıyla ayrıca, Nisan 2017-Mayıs 2019 tarihleri arasında (pandemi öncesi dönemde) anestezi YBÜ'de tedavi gören 363 hastaya (Grup 3) ait veriler incelendi. Gruplarda yer alan toplam 1408 hastanın trakeal aspirat örneklerinden izole edilen bakteriyel etkenler ve antibiyotik direnç oranları belirlendi. COVID-19 YBÜ'lerinde takip edilen hastaların 430'unun (%63.3) trakeal aspirat örneğinde patojen mikroorganizma üremesi tespit edildi. COVID-19 YBÜ'lerinde takip edilen hastalarda, sekonder bakteriyel pnömoni etkenleri olarak sıklık sırasına göre; Acinetobacter baumannii (%39.6), Klebsiella pneumoniae (%35.5) ve Pseudomonas aeruginosa (%3.5) izole edildi. A. baumannii ve K. pneumoniae izolasyon oranları COVID-19 hastalarında (Grup 1) COVID-19 dışı YBÜ hastalarına (Grup 2) göre ve benzer şekilde, salgın dönemindeki tüm hastalarda (Grup 1 + Grup 2) salgın öncesi döneme göre anlamlı derecede yüksek bulundu (p<0.001). Dikkat çekici diğer bulgular ise salgın döneminde izole edilen A. baumannii ve K. pneumoniae suşlarında, salgın öncesi döneme kıyasla yüksek antibiyotik direnç oranlarının varlığı ve izolatların büyük çoğunluğunda çoklu ilaç direncinin gözlemlenmesi idi. COVID-19 nedeniyle YBÜ'lerde takip edilen hastalarda eşlik eden sekonder bakteriyel enfeksiyonlarla ilişkili artmış mortalite riskinin önüne geçilebilmesi için; hastaların bakteriyel enfeksiyonlar açısından hızlı değerlendirilmesi, zamanında ve uygun antibiyotik tedavisi ve gerekli izolasyon önlemlerinin alınması önem arz etmektedir.

Abstract

Since the World Health Organization declared COVID-19 (Coronavirus Disease 2019) a pandemic on March 11, 2020, SARS-CoV-2 has caused high rates of morbidity and mortality worldwide. The addition of secondary bacterial infections such as pneumonia to the clinical course led to more mortality of the disease. This situation has led to an increase in the use of antibiotics for both prophylactic and therapeutic purposes and has caused concerns about the increase in antibiotic resistance rates and multi-drug resistant strains. 679 COVID-19 patients (Group 1) with a diagnosis confirmed by polymerase chain reaction (PCR) and 366 patients who were followed up in the anesthesia intensive care unit (ICU) during the pandemic but had negative SARS-CoV-2 PCR test results (Group 2) were included in this study; all of them were treated in the ICU of our hospital between April 2020 - May 2022. In order to observe the possible effects of SARS-CoV-2 infection on the distribution of the causative agent and changes in antibiotic resistance patterns, the data of 363 patients (Group 3) who were treated in the anesthesia ICU between April 2017 and May 2019 (pre-pandemic period) were analyzed. Bacterial agents isolated from tracheal aspirate samples and antibiotic resistance rates of 1408 patients in the groups were determined. Pathogenic microorganism growth was detected in the tracheal aspirate samples of 430 (63.3%) of the patients followed in the COVID-19 ICUs. In the patients followed in COVID-19 ICUs, as secondary bacterial pneumonia agents, in order of frequency; Acinetobacter baumannii (39.6%), Klebsiella pneumoniae (35.5%) and Pseudomonas aeruginosa (3.5%) were isolated. A. baumannii and K. pneumoniae isolation rates were significantly higher in COVID-19 patients (Group 1) compared to non-COVID-19 ICU patients (Group 2) and were similarly higher in all patients in the pandemic period (Group 1 + Group 2) compared to the pre-epidemic period (p<0.001). Other remarkable findings were the presence of high antibiotic resistance rates in A. baumannii and K. pneumoniae strains isolated during the pandemic period, compared to the pre-pandemic period, and the observation of multi-drug resistance in the vast majority of isolates. In order to prevent the increased risk of mortality associated with concomitant secondary bacterial infections in patients followed in ICUs due to COVID-19; it is important to evaluate patients quickly in terms of bacterial infections, to take timely and appropriate antibiotic treatment and to take necessary isolation measures.

Notes

SARS-CoV-2 Pandemisinin Yoğun Bakım Ünitelerinde Sekonder Bakteriyel Pnömoni Etkenlerinin Dağılımına ve Antibiyotik Direnç Profiline Etkileri

Files

lms.2023.34.pdf

Files (803.0 kB)

Name Size Download all
md5:e383c5e7077f2afa20430f89271885e2
803.0 kB Preview Download

Additional details

References

  • 1. Güner Ö, Buzgan T. COVID-19 Pandemisinin İlk Üç Ayı: Dünya Sağlık Örgütünün Salgına Verdiği Yanıt. J Mol Virol Immunol 2021; 2(3): 86-101.
  • 2. Kujawski SA, Wong KK, Collins JP, Epstein L, Killerby ME, Midgley CM, et al.; COVID-19 Investigation Team. Clinical and virologic characteristics of the first 12 patients with coronavirus disease 2019 (COVID-19) in the United States. Nat Med 2020; 26(6): 861-8.
  • 3. Zhao D, Yao F, Wang L, Zheng L, Gao Y, Ye J, et al. A Comparative Study on the Clinical Features of Coronavirus 2019 (COVID-19) Pneumonia With Other Pneumonias. Clin Infect Dis 2020; 71(15): 756-61.
  • 4. Lardaro T, Wang AZ, Bucca A, Croft A, Glober N, Holt DB, et al. Characteristics of COVID-19 patients with bacterial coinfection admitted to the hospital from the emergency department in a large regional healthcare system. J Med Virol 2021; 93(5): 2883-9.
  • 5. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al.; China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 2020; 382(18): 1708-20.
  • 6. Goyal P, Choi JJ, Pinheiro LC, Schenck EJ, Chen R, Jabri A, et al. Clinical Characteristics of Covid-19 in New York City. N Engl J Med 2020; 382(24): 2372-4.
  • 7. Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 2010; 74(3): 417-33.
  • 8. Woodworth KR, Walters MS, Weiner LM, Edwards J, Brown AC, Huang JY, et al. Vital Signs: Containment of Novel Multidrug-Resistant Organisms and Resistance Mechanisms - United States, 2006-2017. MMWR Morb Mortal Wkly Rep 2018; 67(13): 396-401.
  • 9. Hu S, You Y, Zhang S, Tang J, Chen C, Wen W, et al. Multidrug-resistant infection in COVID-19 patients: A meta-analysis. J Infect 2023; 86(1): 66-117.
  • 10. Witt LS, Howard-Anderson JR, Jacob JT, Gottlieb LB. The impact of COVID-19 on multidrug-resistant organisms causing healthcare-associated infections: a narrative review. JAC Antimicrob Resist 2022; 5(1): dlac130.
  • 11. World Health Organization (WHO), Geneva, Switzerland. Clinical management of COVID-19 Interim Guidance – 27 May 2020. Available at: https://apps.who.int/iris/handle/10665/332196 [Accessed April 10, 2023].
  • 12. Zhang H, Zhang Y, Wu J, Li Y, Zhou X, Li X, et al. Risks and features of secondary infections in severe and critical ill COVID-19 patients. Emerg Microbes Infect 2020; 9(1): 1958-64.
  • 13. Suarez-de-la-Rica A, Serrano P, De-la-Oliva R, Sánchez-Díaz P, Molinero P, Falces-Romero I, et al. Secondary infections in mechanically ventilated patients with COVID-19: An overlooked matter? Rev Esp Quimioter 2021; 34(4): 330-6.
  • 14. De Bruyn A, Verellen S, Bruckers L, Geebelen L, Callebaut I, De Pauw I, et al. Secondary infection in COVID-19 critically ill patients: a retrospective single-center evaluation. BMC Infect Dis 2022; 22(1): 207.
  • 15. Lai CC, Wang CY, Hsueh PR. Co-infections among patients with COVID-19: The need for combination therapy with non-anti-SARS-CoV-2 agents? J Microbiol Immunol Infect 2020; 53(4): 505-12.
  • 16. Sharifipour E, Shams S, Esmkhani M, Khodadadi J, Fotouhi-Ardakani R, Koohpaei A, et al. Evaluation of bacterial co-infections of the respiratory tract in COVID-19 patients admitted to ICU. BMC Infect Dis 2020; 20(1): 646.
  • 17. Rawson TM, Moore LSP, Zhu N, Ranganathan N, Skolimowska K, Gilchrist M, et al. Bacterial and Fungal Coinfection in Individuals With Coronavirus: A Rapid Review To Support COVID-19 Antimicrobial Prescribing. Clin Infect Dis 2020; 71(9): 2459-68.
  • 18. Maraia Z, Mazzoni T, Turtora MP, Tempera A, Spinosi M, Vagnoni A, et al. Epidemiological Impact on Use of Antibiotics in Patients Hospitalized for COVID-19: A Retrospective Cohort Study in Italy. Antibiotics (Basel) 2023; 12(5): 912.
  • 19. Lai CC, Chen SY, Ko WC, Hsueh PR. Increased antimicrobial resistance during the COVID-19 pandemic. Int J Antimicrob Agents 2021; 57(4): 106324.
  • 20. European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters. 2022, Version 12.
  • 21. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing; 22nd Informational Supplement M100-S22. Clinical and Laboratory Standards Institute, Wayne, Pennsylvania.
  • 22. Wang L, He W, Yu X, Hu D, Bao M, Liu H, et al. Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. J Infect 2020; 80(6): 639-45.
  • 23. He Y, Li W, Wang Z, Chen H, Tian L, Liu D. Nosocomial infection among patients with COVID-19: A retrospective data analysis of 918 cases from a single center in Wuhan, China. Infect Control Hosp Epidemiol 2020; 41(8): 982-3.
  • 24. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395(10229): 1054-62. Erratum in: Lancet 2020; 395(10229): 1038. Erratum in: Lancet 2020; 395(10229): 1038.
  • 25. Ramadan HK, Mahmoud MA, Aburahma MZ, Elkhawaga AA, El-Mokhtar MA, Sayed IM, et al. Predictors of Severity and Co-Infection Resistance Profile in COVID-19 Patients: First Report from Upper Egypt. Infect Drug Resist 2020; 13: 3409-22.
  • 26. Bahceci I, Yildiz IE, Duran OF, Soztanaci US, Kirdi Harbawi Z, Şenol FF, et al. Secondary Bacterial Infection Rates Among Patients With COVID-19. Cureus 2022; 14(2): e22363.
  • 27. Dal T, Dal MS, Ağır İ. Acinetobacter baumannii'de antibiyotik direnci ve AdeABC aktif pompa sistemleri: Literatürün gözden geçirilmesi. Van Tıp Derg 2012; 19(3): 137-48.
  • 28. Al Bshabshe A, Al-Hakami A, Alshehri B, Al-Shahrani KA, Alshehri AA, Al Shahrani MB, et al. Rising Klebsiella pneumoniae Infections and Its Expanding Drug Resistance in the Intensive Care Unit of a Tertiary Healthcare Hospital, Saudi Arabia. Cureus 2020; 12(8): e10060.
  • 29. Sahutoğlu S, Savran Y, Cömert B. Risk Factors for Resistant Gram-Negative Infections in Intensive Care Unit. J Crit Intensive Care 2020; 11(1): 21-27.
  • 30. Thompson DS. Methicillin-resistant Staphylococcus aureus in a general intensive care unit. J R Soc Med 2004; 97(11): 521-6.
  • 31. Avan Mutlu T, Bozok T. COVID-19 hastalarının alt solunum yolu örneklerinden izole edilen bakteriyel etkenlerin identifikasyonu ve antibakteriyel direnç paternlerinin incelenmesi. Turk Mikrobiyol Cemiy Derg 2022; 52(1): 48-55.