Published October 19, 2023
| Version v1
Journal article
Open
ELECTRICAL BREAKDOWN IN WATER
Creators
Description
The process of formation of anodic electrical breakdown in the crystal structure of ice and liquid water is considered within the framework of the mechanism of generation of free charge carriers through interatomic Auger transitions in the valence band of the dielectric.
Files
Deutsche internationale Zeitschrift für zeitgenössische Wissenschaft №66 2023-64-68.pdf
Files
(400.8 kB)
Name | Size | Download all |
---|---|---|
md5:1b8844f66b0471706ee2b2d8895e2083
|
400.8 kB | Preview Download |
Additional details
References
- 1. Kuzhekin I.P., Kurbanov E.D. Impul'snyy razryad v vode. Energetikanın problemleri. 2008. № 1. (in Russian) 2. Vorobyov G.A. Effect of Discharge Incorporation into a Solid Insulator Immersed in an Insulating Fluid. Tech. phys. 2005. V. 50. №4. p. 517. 3. Vazhov V.F., Koslova N.V. Impul'snaya elektricheskaya prochnost' vody i granita. Vestnik nauki Sibiri. 2012. № 1 (2) .s. 79. (in Russian) 4. Petrov Yu. V., Morozov V. A., Smirnov I. V. and Lukin A. A. Electrical Breakdown of a Dielectric on the Voltage Pulse Trailing Edge: Investigation in Terms of the Incubation Time Concept. Tech. phys. 2015. V.60. № 12. pp. 1733-1737. DOI: 10.1134/S1063784215120178 5. Arbuzov A. I., Bystritskiy V. I., Krasik Ya. E, Lopatin V. S., Usov Yu. P., Tolmacheva V. G., Chistyakov S. A. Sil'notochnyy uskoritel' s vodyanym nakopitelem. Trudy 6 vsesoyuznogo soveshchaniya po uskoritelyam zaryazhennykh chastits. Dubna. 1978. 11- 13 oktyabrya. s. 75. (in Russian) 6. Vorobyov V. V. Mekhanizm proboya vodyanogo dielektrika sil'notochnykh impul'sivnykh uskoriteley zaryazhennykh chastits (Dis. kand. fiz.- mat. nauk. Novosibirsk, 1984). (in Russian) 7. Vorobyov A.A., Vorobyov G.A. Electricheskiy proboi i razrushenie tverdykh tel (Izda-vo Vysshaya shkola, M., 1966), 224 s. (in Russian) 8. Vershinin Yu. N. Elektronno-teplovye i detonatsionnye protsessy pri elektricheskom proboe tverdykh dielektrikov (Izda-vo UrO RAN, Ekaterinburg, 2000), 260 s. (in Russian) 9. Punanov I.F. Prostranstvenno-vremennye i energeticheskie kharakteristiki vysokovoltnogo nanosekundnogo proboya kondensirovannykh dielektrikov (Dis. kand.fiz.-mat.nauk. (Yekaterinburg, UrFU, 2017). (in Russian) 10. Ovchinnikov I.T., Yanshin E.V. Izmereniye predproboynoy elektroprovodnosti vody s pomoshch'yu impul'snogo vysokovol'tnogo elektroopticheskogo mosta. V kn. Impul'snyy razryad v dielektrikakh. (Izda-vo Nauka, Novosibirsk, 1985), s. 83- 88. (in Russian) 11. Kulikov V. D. The mechanism of the streamer stage of breakdown in crystal dielectrics. Tech. Phys. Lett. 2000. V. 26. № 2. pp. 170-172. DOI: 10.1134/1.1262781 12. Kulikov V. D. Charge Carrier Generation in a KBr Crystal under the Action of a Pulsed Sub-Breakdown Electric Field. Tech. Phys. Lett . 2002. V. 28. № 2. pp. 99-101. DOI: 10.1134/1.1458502 13. Kulikov V. D. Electrical Breakdown in Ionic Crystals Exposed to Nanosecond Pulses. Tech. Phys. 2003. V. 48. № 12. pp. 1527-1531. DOI: 10.1134/1.1634672 14. Kulikov V. D. Electrical Breakdown in Ionic Crystals. Tech. Phys. 2009. V. 54. № 1. pp. 56-61. DOI:10.1134/S1063784209010083 15. Kulikov V. D. Model of the Electrical Breakdown Channel in Ionic Crystals. Tech. Phys. 2012. V. 57. № 2. pp. 192-197. DOI:10.1134/S1063784212020144 16. Emlin R. V., Barakhvostov S. V., Kulikov V. D. Anisotropy of Electrical Breakdown in Crystalline Quartz. Tech. Phys. 2009. V. 54. № 7. pp. 1076-1079. DOI:10.1134/S1063784209070275 17. Kulikov V. D. Electrical Breakdown in Ionic Crystals (Izda-vo Tomsk St. Univ. Tomsk, 2014). (in Russian) 18.. Punanov I.F., Emlin R. V., Kulikov V. D. and Cholakh S.O. Resistance of a Pulsed Electrical Breakdown Channel in Ionic Crystals. Tech. Phys. 2014. V.59. № 4. pp. 503-507. DOI: 10.1134/S1063784214040197 19. Kulikov V., Yakovlev V., Bobkova L. Model of a streamer discharge channel in monocrystalline CdS. NJDIS. 2020. № 44-1. pp. 21-24. 20. Kulikov V. Electrical breakdown of polymeric materials. NJDIS.№ 62-1. pp. 51-54. 2021. DOI:10.24412/3453-9875-2021-62-1-51-54 21. Kulikov V. Barrier effect in dielectric materials. NJDIS. 2023. № 62-1.pp. 51-54. DOI: org/10.5281/zenodo.7688048 22. Emlin R.V., Punanov I.F., Kulikov V.D. Electronic mechanism of propagation of nanosecond breakdown channel in liquid organic dielectrics. Tech. Phys. 2022. V. 92. № 10. pp. 1342-1348. DOI: 10.21883/TP.2022.10.54361.93-22 23. Zatsepina G. N. Fizicheskiye svoystva i struktura vody. (Izda-vo Moskov St. Univ, Moskva, 1998). 184 s. (in Russian)
- 24. Eisenberg D. S., Kauzmann W. The structure and properties of water (Oxford University Press, N.Y., 1969). 296 p. 25. Casassa S., Calatayud M., Doll K., Minot C. and Pisani C. Proton ordered cubic and hexagonal periodic models of ordinary ice. Chem. Phys. Lett. 2005. 409. 110. DOI: org/10.1016/j.cplett.2005.04.068 26. Macher M., Klimeˇs J., Franchini C., and Kresse G. The random phase approximation applied to ice. J. Chem. Phys. 2014. 140. 084502. 27. Tret'yakov Yu. D. Neorganicheskaya khimiya (Izda-vo ACADEMA, Moskva, 2004). T. 2. 366 s. (in Russian) 28. P. Cabral do Couto, S. G. Estácio, and B. J. Costa Cabrala. The Kohn-Sham density of states and band gap of water: From small clusters to liquid water. J. Chem. Phys. 2005. 123, 054510 . DOI: 10.1063/1.1979487 29. P. Cabral do Couto, B. J. Costa Cabral, S. Canuto. Electron binding energies of water clusters: Implications forthe electronic properties of liquid water. Chem. Phys. Lett. 2006. 429. pp. 129–135. DOI: 10.1016/j.cplett.2006.08.046 30. Changming Fang, Wun-Fan Li, Rik S. Koster, Jiri Klimes, Alfons van Blaaderen and Marijn A. van Huisa. The accurate calculation of the band gap of liquidwater by means of GW corrections applied toplane-wave density functional theory molecular dynamics simulations. Phys. Chem. Chem. Phys. 2015. 17. p. 365. DOI: 10.1039/c4cp04202f 31. Bischoff T., Reshetnyak I. and Pasquarello A. Band gaps of liquid water and hexagonal ice through advanced electronic-structure calculations. Phys. Rev. Research, 2021. 3. 023182 . DOI: 10.1103/PhysRevResearch.3.023182