Published June 9, 2017 | Version v1
Figure Open

Figure 4 from: Bingham H, Doudin M, Weatherdon L, Despot-Belmonte K, Wetzel F, Groom Q, Lewis E, Regan E, Appeltans W, Güntsch A, Mergen P, Agosti D, Penev L, Hoffmann A, Saarenmaa H, Geller G, Kim K, Kim H, Archambeau A, Häuser C, Schmeller D, Geijzendorffer I, García Camacho A, Guerra C, Robertson T, Runnel V, Valland N, Martin C (2017) The Biodiversity Informatics Landscape: Elements, Connections and Opportunities. Research Ideas and Outcomes 3: e14059. https://doi.org/10.3897/rio.3.e14059

  • 1. UN Environment World Conservation Monitoring Centre, Cambridge, United Kingdom
  • 2. Museum fuer Naturkunde , Berlin, Germany
  • 3. Botanic Garden Meise, Meise, Belgium
  • 4. The Biodiversity Consultancy, Cambridge, United Kingdom
  • 5. Ocean Biogeographic Information System (OBIS), Intergovernmental Oceanographic Commission of UNESCO, Oostende, Belgium
  • 6. Freie Universität Berlin, Berlin, Germany
  • 7. Plazi, Bern, Switzerland
  • 8. Pensoft Publishers & Bulgarian Academy of Sciences, Sofia, Bulgaria
  • 9. Leibniz Institute for Research on Evolution and Biodiversity, Berlin, Germany
  • 10. University of Eastern Finland, Joensuu, Finland
  • 11. Group on Earth Observations, Geneva, Switzerland
  • 12. National Institute of Ecology, Seocheon, Korea, South
  • 13. Global Biodiversity Information Facility France, Paris, France
  • 14. Museum für Naturkunde, Berlin, Germany
  • 15. Environmental Research Center (UFZ) Halle, Leipzig, Germany
  • 16. Tour du Valat, Research Institute for the conservation of Mediterranean Wetlands, Arles, France
  • 17. CSIC, Spanish Council for Scientific Research, Seville, Spain
  • 18. Group on Earth Observations - Biodiversity Observation Network, Leipzig, Germany
  • 19. Global Biodiversity Information Facility, Copenhagen, Denmark
  • 20. University of Tartu, Tartu, Estonia
  • 21. Norwegian Biodiversity Information Centre, Trondheim, Norway

Description

Figure 4 - The network of biodiversity informatics organisations. The network visualisation was created using NodeXL (Version 1.0.1.229) (Smith et al. 2009) and was laid out with the Harel–Koren Fast Multiscale algorithm and then adjusted manually to remove overlaps. The colours represent clusters identified using the Girvan–Newman algorithm.

Files

oo_137278.png

Files (122.6 kB)

Name Size Download all
md5:370123d673ce591cce7fcc26755cb17b
122.6 kB Preview Download

Additional details

Related works

Is part of
10.3897/rio.3.e14059 (DOI)