Published June 1, 2016 | Version v1
Journal article Open

Functional Data Analysis

Description

With the advance of modern technology, more and more data are being recorded continuously during a time interval or intermittently at several discrete time points. These are both examples of functional data, which has become a commonly encountered type of data. Functional data analy- sis (FDA) encompasses the statistical methodology for such data. Broadly interpreted, FDA deals with the analysis and theory of data that are in the form of functions. This paper provides an overview of FDA, starting with simple statistical notions such as mean and covariance functions, then cover- ing some core techniques, the most popular of which is functional principal component analysis (FPCA). FPCA is an important dimension reduction tool, and in sparse data situations it can be used to impute functional data that are sparsely observed. Other dimension reduction approaches are also discussed. In addition, we review another core technique, functional linear regression, as well as clustering and classification of functional data. Beyond linear and single- or multiple- index methods, we touch upon a few nonlinear approaches that are promising for certain applications. They include additive and other nonlinear functional regression models and models that feature time warping, manifold learning, and empirical differential equations. The paper concludes with a brief discussion of future directions.

Files

article.pdf

Files (2.8 MB)

Name Size Download all
md5:2bc0b91acf1f429b6c75a7f3ce5efd2e
2.8 MB Preview Download