Planned intervention: On Wednesday April 3rd 05:30 UTC Zenodo will be unavailable for up to 2-10 minutes to perform a storage cluster upgrade.
Published November 11, 2014 | Version v1
Journal article Open

Multiscale Layered Biomechanical Model of the Pacinian Corpuscle

Description

This paper describes a multiscale analytical model of the lamellar structure and the biomechanical response of the Pacinian Corpuscle (PC). In order to analyze the contribution of the PC lamellar structure for detecting high-frequency vibrotactile (VT) stimuli covering 10 Hz to a few kHz, the model response is studied against trapezoidal and sinusoidal stimuli. The model identifies a few generalizable features of the lamellar structure which makes it scalable for different sizes of PC with different number of lamellae. The model describes the mechanical signal conditioning of the lamellar structure in terms of a recursive transfer-function, termed as the Compression-Transmittance-Transfer-Function (CTTF). The analytical results show that with the increase of the PC layer index above 15, the PC inner core (IC) relaxes within 1 ms against step compression of the outermost layer. This model also considers the mass of each PC layer to investigate its effect on the biomechanical response of the lamellar structure. The interlamellar spacing and its biomechanical properties along with the model response are validated with experimental data in the literature. The proposed model can be used for simulating a network of PCs considering their diversity for analyzing the high-frequency VT sensitivity of the human skin.

Files

article.pdf

Files (1.5 MB)

Name Size Download all
md5:0899818c6faea68fa796054fc5b39523
1.5 MB Preview Download