Published October 1, 2003 | Version v1
Journal article Open

Structure and Evolution of the Horizontal Septum in vertebrates

Description

Although the horizontal septum (HS) has been identified as playing a role in fish biomechanics and in path finding of cells during zebrafish development, its morphology is poorly known. However, it is generally regarded as an evolutionarily conserved structure. To test this idea, we applied a novel combination of techniques to analyse the HS of 35 species from all major gnathostome clades in which is visualized its collagen fibre architecture. Results show that the HS is a conserved trait only with respect to the presence of caudolateral [= epicentral] and craniolateral [= posterior oblique] collagen fibre tracts, but differs remarkably with respect to the specifications of these tracts. Our data revealed several evolutionary changes within vertebrates. In the gnathostome ancestor, the two tracts are represented by evenly distributed epicentral fibres (ECFs) and posterior oblique fibres (POFs). ECFs are condensed to distinct epicentral tendons (ECTs) in the actinopteran ancestor. POFs independently evolved to distinct posterior oblique tendons (POTs) at least two times within teleosts. Within basal teleostomes, POFs as well as ECFs or ECTs were lost two times independently. POTs were lost at least three times independently within teleosts. This view of a homoplastic HS remains stable regardless of the competing phylogenies used for analysis. Our data make problematic any generalization of biomechanical models on fish swimming that include the HS. They indicate that the pathfinding role of the HS in zebrafish may be extended to gnathostome fishes, but not to agnathans, sarcopterygian fishes and tetrapods.

Files

article.pdf

Files (411.3 kB)

Name Size Download all
md5:28088e8479a204a0d8bbfb1291f57a1a
411.3 kB Preview Download