5′-AMP-activated protein kinase alpha regulates stress granule biogenesis
Creators
Description
Stress granule (SG) assembly represents a conserved eukaryotic defense strategy against various insults. Although essential for the ability to cope with deleterious conditions, the signaling pathways controlling SG formation are not fully understood. The energy sensor AMP-activated protein kinase (AMPK) is critical for the cellular stress response. Human cells produce two AMPK catalytic α-subunits with partially overlapping, but also unique functions. Here, we provide direct support for structural and functional links between AMPK-α isoforms and SGs. As such, several stressors promote SG association of AMPK-α2, but not AMPK-α1. Multiple lines of evidence link AMPK activity to SG biogenesis. First, pharmacological kinase inhibition interfered with SG formation. Second, AMPK-α knockdown combined with in-depth quantitative SG analysis revealed isoform-specific changes of SG characteristics. Third, overexpression of mutant α-subunits further substantiated that AMPK regulates SG parameters. Finally, we identified the SG-nucleating protein G3BP1 as an AMPK-α2 binding partner. This interaction is stimulated by stress and notably occurs in SGs. Collectively, our data define the master metabolic regulator AMPK as a novel SG constituent that also controls their biogenesis.
Files
article.pdf
Files
(7.2 MB)
Name | Size | Download all |
---|---|---|
md5:883a764b78139b2383bc348ad47c670c
|
7.2 MB | Preview Download |