Conference paper Open Access

RAN Moderation in 5G Dynamic Radio Topology

Ömer Bulakci; Alexandros Kaloxylos; Josef Eichinger; Chan Zhou

Abstract—The standardization for the fifth generation (5G) of mobile and wireless networks is at its early phase and has recently completed the first study item in Release 14. Nevertheless, there is a consensus that 5G will address the diverse service requirements of high-variety use cases. The network shall cope with such variation effectively and cost-efficiently even though the requirements can change over space and time. The design of the radio topology for the peak service demand is, thus, not desirable for network operators. As a consequence, the trend is towards more flexible network deployment. In this context, dynamic radio topology through vehicular nomadic nodes (VNNs) is an emerging concept towards 5G to efficiently address non-uniformly distributed traffic. VNNs are aimed to overcome the lack of flexibility induced by small cells that are deployed at fixed locations via network planning in current wireless networks. A VNN is a low-power access node with wireless self-backhaul, which can be activated temporarily to provide additional system capacity and/or coverage on demand. VNNs can be integrated into vehicles, e.g., in car-sharing fleets. In this paper, we evaluate the performance of radio access network (RAN) moderation of VNNs in a multi-cell environment considering composite fading/shadowing environments with co-channel interference, where active VNNs are selected from a set of available candidate VNNs based on the signal-to-interference-plus-noise ratio (SINR) on the wireless backhaul link. The results show that RAN moderation can significantly improve the end-to-end rate and SINR performances along with clear amount-of-fading (AoF) reduction.

(c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.
Files (709.2 kB)
Name Size
RAN Moderation in 5G Dynamic Radio Topology_METIS-II.pdf
md5:0224c402e7993e381ec821797a1a33e6
709.2 kB Download
91
156
views
downloads
All versions This version
Views 9191
Downloads 156156
Data volume 110.6 MB110.6 MB
Unique views 8484
Unique downloads 154154

Share

Cite as