Dataset Open Access

Daily gridded datasets of snow depth and snow water equivalent for the Iberian Peninsula from 1980 to 2014

Alonso-González, Esteban; López-Moreno, J. Ignacio; Gascoin, Simon; García-Valdecasas Ojeda, Matilde; Sanmiguel-Vallelado, Alba; Navarro-Serrano, Francisco; Revuelto, Jesús; Ceballos, Antonio; Esteban-Parra, María Jesús; Essery, Richard

We present snow observations and a validated daily gridded snowpack dataset that was simulated from downscaled reanalysis of data for the Iberian Peninsula. The Iberian Peninsula has long-lasting seasonal snowpacks in its different mountain ranges, and winter snowfalls occur in most of its area. However, there are only limited direct observations of snow depth (SD) and snow water equivalent (SWE), making it difficult to analyze snow dynamics and the spatiotemporal patterns of snowfall. We used meteorological data from downscaled reanalyses as input of a physically based snow energy balance model to simulate SWE and SD over the Iberian Peninsula from 1980 to 2014. More specifically, the ERA-Interim reanalysis was downscaled to 10 ×10 km resolution using the Weather Research and Forecasting (WRF) model. The WRF outputs were used directly, or as input to other submodels, to obtain data needed to drive the Factorial Snow Model (FSM). We used lapse-rate coefficients and hygrobarometric adjustments to simulate snow series at 100 m elevations bands  for each 10 × 10 km grid cell in the Iberian Peninsula.  The snow series were validated using data from MODIS satellite sensor and ground observations. The overall simulated snow series accurately reproduced the interannual variability of snowpack and the spatial variability of snow accumulation and melting, even in very complex topographic terrains. Thus, the presented dataset may be useful for many applications, including land management, hydrometeorological studies, phenology of flora and fauna, winter tourism and risk management .


Files (3.5 GB)
Name Size
1.3 GB Download
2.1 GB Download
54.0 MB Download
149.0 kB Download
182.6 kB Download


Cite as