Published September 28, 2023 | Version v1
Book chapter Open

Drought Stress is a Global Problem in Sustainable Agriculture: Response of Plant, Role of Fungal Endophytes

  • 1. Aydın Adnan Menderes University, Faculty of Agriculture, Department of Plant Protection, South Campus, Aydın / Türkiye.

Description

Food will always be needed because of the expanding world population. By 2050, there may be more than 9.7 billion people in the world, which might result in a surge of up to 70% in the global food output (Castaneda et al., 2016; Abdelrahman et al., 2017). However the population is more than 65% relying completely on agriculture for their subsistence, this number can reach up to 90% in underdeveloped nations (Castaneda et al., 2016). Food security in all nations, but particularly in emerging nations, is seriously threatened by crop losses (Ghini et al., 2008; Chakraborty & Newton, 2011). Crop losses are primarily caused by pathogens and abiotic factors (Singla et al., 2016). Small land ownership and improper mechanization are both ongoing factors that affect agricultural productivity (Ahluwalia et al., 2021). Abiotic stress is one of the most significant constraints in agricultural production, principally in dry and semi-dry districts. It contains drought, temperature swings, excessive soil salinity, metal toxicity, and oxidative stresses (Fahad et al., 2017). These affect the sustainability of plants in natural and agricultural communities (McCartney & Lefsrud, 2018; Bhat et al., 2020). In recent decades never-before-seen climate change has made the consequences of these abiotic stresses worse (Fedoroff et al., 2010). The anthropogenic effects are deforestation, industrialization, agriculture, urbanization, and changes in the use of land caused the climate change (Suryanarayanan et al., 2018; Chandra et al., 2021). The rise of temperature and atmospheric carbon dioxide (CO2) amount with variations in the timing of rain is the result of climate change (Chandra et al., 2021). In addition, the Intergovernmental Panel on Climate Change (IPCC) has explained that if anthropogenic activity keeps at its current rate, global temperatures might climb by up to 1.5ºC by the year 2052 (IPCC, 2018). This will create often and severe drought occurrences in several regions (Okunlola et al., 2017). Drought is the most important abiotic stress that inhibits crop productivity worldwide (Zolin & Rodrigues, 2015) and causes a 50–70% drop in the productivity of agriculture (Verma & Deepti, 2016). Also, about 700 million people will face the risk of relocation in 2030 due to drought stress (Jamieson et al., 2021). Water minorities through a reduction in rainfall and a rising density of arid terms produce drought circumstances (Mirajkar et al., 2019; Ahluwalia et al., 2021). Numerous negative impacts of drought stress on plants include decreasing plant biomass and photosynthesis and changes in hormone metabolism and enzyme function. Moreover, severe drought can reduce the yield of plants and increase plant mortality (Challinor et al., 2004; Stovall et al., 2019). Drought stress decreased output in a variety of crops by almost 70% (Kaur et al., 2008; Akram et al., 2013). Recent studies have emphasized the significance of plant-associated microbial communities in supporting the resistance and recovery of their host plants from abiotic stresses (Lata et al., 2018; Sadeghi et al., 2020).

This study focused on the impacts of fungal endophytes and drought stress in plants.

Files

ASUA Chapter_8 .pdf

Files (639.6 kB)

Name Size Download all
md5:772e65a5ba129804751c48f132275e7a
639.6 kB Preview Download

Additional details

Related works

Documents
Book chapter: 10.5281/zenodo.8385856 (DOI)

References

  • Abdelrahman, M., El-Sayed, M., Jogaiah, S., Burritt, D. J. & Tran, L. S. P. (2017). The "STAY-GREEN" trait and phytohormone signaling networks in plants under heat stress. Plant Cell Reports, 36 (7), 1009–1025. Online ISSN: 1432-203X. Access Address (25.07.2023): https://link.springer.com/article/10.1007/s00299-017-2119-y.
  • Ahluwalia, O., Singh, P. C. & Bhatia, R. (2021). A review on drought stress in plants: Implications, mitigation and the role of plant growth promoting rhizobacteria. Resources, Environment and Sustainability, 5, 100032. Online ISSN: 2666-9161. Access Address (23.07.2023): https://www.sciencedirect.com/science/article/pii/S2666916121000190.
  • Akram, H. M., Ali, A., Sattar, A., Rehman, H. S. U. & Bibi, A. (2013). Impact of water deficit stress on various physiological and agronomic traits of three basmati rice (Oryza sativa L.) cultivars. The Journal of Animal & Plant Sciences, 23(5), 1415-1423. ISSN: 1018-7081. Access Address (21.07.2023): http://www.thejaps.org.pk/docs/v-23-5/30.pdf.
  • Ali, S., Isaacson, J., Kroner, Y., Saldias, S., Kandasamy, S. & Lazarovits, G. (2018). Corn sap bacterial endophytes and their potential in plant growth-promotion. Environmental Sustainability, 1(4), 341-355. Online ISSN: 2523-8922. Access Address (23.07.2023): https://link.springer.com/article/10.1007/s42398-018-00030-4.
  • Andres-Barrao, C., Lafi, F. F., Alam, I., De Z´elicourt, A., Eida, A. A., Bokhari, A.,… Saad, M. M. (2017). Complete genome sequence analysis of Enterobacter sp. SA187, a plant multi-stress tolerance promoting endophytic bacterium. Frontiers Microbiology, 8, 2023. Online ISSN: 1664-302X. Access Address (20.07.2023): https://www.frontiersin.org/articles/10.3389/fmicb.2017.02023/full.
  • Anjum, S. A., Xie, X. Y., Wang, L. C., Saleem, M. F., Man, C. & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9), 2026–2032. Online ISSN: 1991-637X. Access Address (23.07.2023):https://academicjournals.org/article/article1380900919_Anjum%20et%20al.pdf.
  • Bakhshandeh, E., Gholamhosseini, M., Yaghoubian, Y. & Pirdashti, H. (2020). Plant growth promoting microorganisms can improve germination, seedling growth and potassium uptake of soybean under drought and salt stress. Plant Growth Regulation, 90, 123–136. Online ISSN: 1573-5087. Access Address (22.08.2023): https://link.springer.com/article/10.1007/s10725-019-00556-5.
  • Balint, Z., Mutua, F., Muchiri, P. & Omuto, C. T. (2013). Monitoring drought with the combined drought index in Kenya. P. Paron, D.O. Olago, and C.T. Omuto (Ed.). Developments in Earth Surface Processes. Volume 16, Chapter 23. (pp. 341–356). ISSN: 0928-2025. Amsterdam: Elsevier B.V.
  • Barberis, L., Michalet, S., Piola, F. & Binet, P. (2021). Root fungal endophytes: identity, phylogeny and roles in plant tolerance to metal stress. Fungal Biology, 125(4), 326-345. Online ISSN: 1878 6146. Access Address (20.07.2023): https://www.sciencedirect.com/science/article/pii/S1878614620301811?via%3Dihub.
  • Ban, S. G., Selak, G. V. & Leskovar, D. I. (2017). Short- and long-term responses of pepper seedlings to ABA exposure. Scientia Horticulturae, 225, 243-251. Online ISSN: 0304-4238. Access Address (22.07.2023): https://www.sciencedirect.com/science/article/pii/S0304423817303862.
  • Bernardo, L., Carletti, P., Badeck, F. W., Rizza, F., Morcia, C.,… Ghizzoni, R. (2019). Metabolomic responses triggered by arbuscular mycorrhiza enhance tolerance to water stress in wheat cultivars. Plant Physiol. Biochemistry, 137, 203–212. Online ISSN: 0981-9428. Access Address (22.07.2023): https://www.sciencedirect.com/science/article/pii/S0981942819300567.
  • Bhat, M. A., Kumar, V., Bhat, M. A., Wani, I. A., Dar, F. L., Farooq, I.,… Jan, A. T. (2020). Mechanistic insights of the interaction of plant growth-promoting rhizobacteria (PGPR) with plant roots toward enhancing plant productivity by alleviating salinity stress. Frontiers Microbiology, 11, 1952. Online ISSN: 1664-302X. Access Address (22.07.2023): https://www.frontiersin.org/articles/10.3389/fmicb.2020.01952.
  • Bhunjun, C. S., Phukhamsakda, C., Hyde, K. D., McKenzie, E. H., Saxena, R. K. & Li, Q. (2023). Do all fungi have ancestors with endophytic lifestyles? Fungal Diversity, 1-26. Online ISSN: 1878-9129. Access Address (21.07.2023): https://link.springer.com/article/10.1007/s13225-023-00516-5.
  • Brenchley, R., Spannagl, M., Pfeifer, M., Barker, G. L., D'Amore, R. & Allen, A. M. (2012). Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature, 491, 705-710. Online ISSN: 1548-7091. Access Address (21.07.2023): https://www.nature.com/articles/nature11650.
  • Castañeda, A., Doan, D., Newhouse, D., Nguyen, M. C., Uematsu, H. & Azevedo, J. P. (2016). Who are the poor in the developing world? Policy research working paper 7844. Background Paper for Poverty and Shared Prosperity Report 2016, Taking on Inequality. The World Bank Group, Washington, D.C.
  • Chakraborty, S. & Newton, A. C. (2011). Climate change, plant diseases and food security: an overview. Plant Pathology, 60, 2-14. Online ISSN: 1365-3059. Access Adress (28.07.2023): https://bsppjournals.onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3059.2010.02411.x.
  • Challinor, A. J., Wheeler, T. R., Slingo, J. M., Craufurd, P. Q. & Grimes, D. I. F. (2004). Design and optimisation of a large-area process-based model for annual crops. Agricultural and Forest Meteorology,124(1-2), 99-120. Online ISSN: 1873-2240. Access Address (28.07.2023): https://www.sciencedirect.com/science/article/pii/S0168192304000085.
  • Chandra, P., Wunnava, A., Verma, P., Chandra, A. & Sharma, R. K. (2021). Strategies to mitigate the adverse effect of drought stress on crop plants-influences of soil bacteria: a review. Pedosphere, 31(3), 496–509. Online ISSN: 2210-5107. Access Address (28.07.2023): https://www.sciencedirect.com/science/article/pii/S1002016020600923.
  • Cheng, L., Han, M., Yang, L. M., Li, Y., Sun, Z. & Zhang, T. (2018). Changes in the physiological characteristics and baicalin biosynthesis metabolism of Scutellaria baicalensis Georgi under drought stress. Industrial Crops and Products, 122, 473-482. Online ISSN: 1872-633X. Access Address (28.07.2023): https://www.sciencedirect.com/science/article/pii/S0926669018305405.
  • Choudhary, A., Pandey, P. & Senthil-Kumar, M. (2016). Tailored Responses to Simultaneous Drought Stress and Pathogen Infection in Plants. Hossain, M., Wani, S., et al. (Ed.). Drought Stress Tolerance in Plants, (May 2016) Vol. 1. Springer, Cham. Access Address (28.07.2023): https://link.springer.com/chapter/10.1007/978-3-319-28899-4_18.
  • Cohen, I., Zandalinas, S. I., Huck, C., Fritschi, F. B. & Mittler, R. (2021). Meta‐analysis of drought and heat stress combination impact on crop yield and yield components. Physiologia Plantarum, 171(1), 66-76. Online ISSN: 1399-3054. Access Address (28.07.2023): https://onlinelibrary.wiley.com/doi/full/10.1111/ppl.13203.
  • Deeba, F., Pandey, A. K., Ranjan, S., Mishra, A., Singh, R., Sharma, Y. K. & Pandey, V. (2012). Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress. Plant Physiology and Biochemistry, 53, 6-18. Online ISSN: 1873-2690. Access Address (28.07.2023): https://www.sciencedirect.com/science/article/pii/S0981942812000046.
  • de Silva, N. I., Brooks, S., Lumyong, S. & Hyde, K. D. (2019). Use of endophytes as biocontrol agents. Fungal Biology Reviews, 33(2), 133-148. Online ISSN: 1878-0253. Access Adress (28.07.2023): https://www.sciencedirect.com/science/article/pii/S1749461317300854.
  • de Sousa, T. P., Chaibub, A. A., da Silva, G. B. & de Filippi, M. C. C. (2020). Trichoderma asperellum modulates defense genes and potentiates gas exchanges in upland rice plants. Physiological and Molecular Plant Pathology, 112, 101561. Online ISSN: 1096-1178. Access Address (22.08.2023): https://www.sciencedirect.com/science/article/abs/pii/S0885576520302290?via%3Dihub.
  • Delaye, L., Guzman, G. G. & Heil, M. (2013). Endophytes versus biotrophic and necrotrophic pathogens are fungal life-styles evolutionarily stable traits? Fungal Diversity, 60, 125–135. Online ISSN: 1878-9129. Access Address (28.07.2023): https://link.springer.com/article/10.1007/s13225-013-0240-y.
  • Engelbrecht, B. M. J., Comita, L. S., Condit, R., Kursar, T. A., Tyree, M. T., Turner, B. L. & Hubbell, S. P. (2007). Drought sensitivity shapes species distribution patterns in tropical forests. Nature, 447, 80–82. Online ISSN: 1548-7091. Access Address (28.07.2023): https://www.nature.com/articles/nature05747.
  • Estrada, C., Wcislo, W. T. & Van Bael, S. A. (2013). Symbiotic fungi alter plant chemistry that discourage leaf‐cutting ants. New Phytologist, 198(1), 241-251. Online ISSN: 1469-8137. Access Address (28.07.2023): https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.12140.
  • Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A.,… Huang, J. (2017). Crop production under drought and heat stress: plant responses and management options. Frontiers Plant Science, 8, 1147. Online ISSN: 1664-462X. Access Address (28.07.2023): https://www.frontiersin.org/articles/10.3389/fpls.2017.01147.
  • Fedoroff, N. V., Battisti, D. S., Beachy, R. N., Cooper, P. J., Fischhoff, D. A., Hodges, C. N.,… Zhu, J. K. (2010). Radically rethinking agriculture for the 21st century. Science, 327(5967), 833–834. Access Address (28.07.2023): https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3137512/.
  • Fouda, A. H., Hassan, S. E. D., Eid, A. M. & Ewais, E. E. D. (2015). Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Annals of Agricultural Sciences, 60(1), 95-104. Online ISSN: 2090-8377. Access Address (28.07.2023):
  • Ghini, R., Hamada, E. & Bettiol, W. (2008). Climate change and plant diseases. Scientia Agricola, 65, 98-107. Online ISSN: 1678-992X. Access Address (28.07.2023): https://www.scielo.br/j/sa/a/QvW4Ly63BjJHSdPK99LG9ML/?lang=en.
  • Ghorbani, A., Razavi, S. M., Ghasemi, V. & Pirdeshti, H. (2019). Effects of endophyte fungi symbiosis on some physiological parameters of tomato plants under 10 day long salinity stress. Journal of Plant Process and Function, 7 (27), 193–208. Online ISSN: 2383-3688. Access Address (28.07.2023): http://jispp.iut.ac.ir/article-1-834-en.html.
  • Giri, B. & Mukerji, K. G. (2004). Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza, 14, 307-312. Online ISSN: 1432-1890. Access Address (28.07.2023): https://link.springer.com/article/10.1007/s00572-003-0274-1.
  • González-Coloma, A., Cosoveanu, A., Cabrera, R., Giménez, C. & Kaushik, N. (2016). Endophytic fungi and their bioprospection. In Deshmukh et al. (Eds.). Fungi: Applications And Management Strategies, (pp. 14–31). Boca Raton, FL, USA: CRC Press. Access Address (28.07.2023): https://www.researchgate.net/publication/308891160_Endophytic_Fungi_and_Their_Bioprospection.
  • Gouda, S., Das, G., Sen, S. K., Shin, H. S. & Patra, J. K. (2016). Endophytes: a treasure house of bioactive compounds of medicinal importance. Frontiers in Microbiology, 7, 1538. Online ISSN: 1664-302X. Access Address (28.07.2023): https://www.frontiersin.org/articles/10.3389/fmicb.2016.01538.
  • Grover, M., Ali, S. Z., Sandhya, V., Rasul, A. & Venkateswarlu, B. (2011). Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World Journal of Microbiology Biotechnology, 27 (5), 1231–1240. Online ISSN: 1573-0972. Access Address (28.07.2023): https://link.springer.com/article/10.1007/s11274-010-0572-7.
  • Harman, G. E. (2011). Trichoderma—not just for biocontrol anymore. Phytoparasitica, 39, 103–108. Online ISSN: 1876-7184. Access Address (22.08.2023): https://link.springer.com/article/10.1007/s12600-011-0151-y.
  • Hassan, M. S. & Elnemr, K. F. (2013). Plant response to drought stress simulated by ABA application: changes in chemical composition of cuticular waxes. Environmental and Experimental Botany, 86, 70-75. Online ISSN: 1873-7307. Access Address (28.07.2023): https://www.sciencedirect.com/science/article/abs/pii/S0098847210001504?via%3Dihub.
  • Heim, R. (2002). A review of twentieth-century drought indices used in the United States. Bulletin of the American Meteorological Society, 83(8), 1149–1166. Online ISSN: 1520-0477. Access Address (28.07.2023): https://journals.ametsoc.org/view/journals/bams/83/8/1520-0477-83_8_1149.xml.
  • Hidangmayum, A., Dwivedi, P., Katiyar, D. & Hemantaranjan, A. (2019). Application of chitosan on plant responses with special reference to abiotic stress. Physiology Molecular Biology Plants, 25, 313–326. Online ISSN: 0974-0430. Access Address (28.07.2023): https://link.springer.com/article/10.1007/s12298-018-0633-1.
  • Hoque, M. A., Banu, M. N. A., Okuma, E., Amako, K., Nakamura, K., Shimoishi, Y. & Murata, Y. (2007). Exogenous proline and glycinebetaine increase NaCl-induced ascorbate-glutathione cycle enzyme activities, and proline improves salt tolerance more than glycinebetaine in tobacco Bright Yellow-2 suspension-cultured cells. Journal of Plant Physiology, 164(11), 1457–1468. Online ISSN: 1618-1328. Access Address (28.07.2023): https://www.sciencedirect.com/science/article/abs/pii/S0176161706003051?via%3Dihub.
  • Howitt, R., Medellín-Azuara, J., MacEwan, D., Lund, J. R. & Sumner, D. (2014). Economic analysis of the 2014 drought for California agriculture. University of California, Davis, CA: Center for Watershed Sciences. (p. 16).
  • Hyde, K. D., Xu, J., Rapior, S., Jeewon, R., Lumyong, S., Niego, A. G. T. & Stadler, M. (2019). The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity, July 2019, 97, 1-136. Online ISSN: 1878-9129. Access Adress (28.07.2023): https://link.springer.com/article/10.1007/s13225-019-00430-9.
  • Intergovernmental Panel on Climate Change (IPCC). (2018). Global warming of 1.5ºC. An IPCC special report on the impacts of global warming of 1.5ºC above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Access Address (28.07.2023): https://www.ipcc.ch/ site/assets/uploads/sites/2/2019/06/SR15_Full_Re- port_High_Res.pdf.
  • Jajarmi, V. (2009). Effect of water stress on germination indices in seven wheat cultivar. World Academy Science, Engineering Technology, 49, 105–106. Online ISSN: 1307-6892. Access Address (28.07.2023):https://kavir.varamin.iau.ir/article_541871_e381e43eff161f2e863ced4d2234f80d.pdf.
  • Jamieson, T., Balzano, S., Le Lan, C., Kildea, T., Ellis, A. V., Brown, M. H. & Leterme, S. C. (2021). Survival of the fittest: Prokaryotic communities within a SWRO desalination plant. Desalination, October 2021, 514, 115152. Online ISSN: 1873-4464. Access Address (28.07.2023): https://www.sciencedirect.com/science/article/pii/S001191642100223X.
  • Jayawardena, R. S., Hyde, K. D., Damm, U., Cai, L., Liu, M., Li, X. H. & Yan, J. Y. (2016). Notes on currently accepted species of Colletotrichum. Mycosphere, 7(8), 1192-1260. ISSN: 2077-7019. Access Address (28.07.2023): https://mycosphere.org/pdf/Mycosphere_SI_2c_9.pdf.
  • Jogawat, A., Saha, S., Bakshi, M., Dayaman, V., Kumar, M., Dua, M. & Johri, A. K. (2013). Piriformospora indica rescues growth diminution of rice seedlings during high salt stress. Plant Signaling Behavior, 8(10), e26891. Online ISSN: 1559-2324. Access Address (28.07.2023):https://www.tandfonline.com/doi/full/10.4161/psb.26891
  • Juana, J. S., Makepe, P. M., Mangadi, K. T. & Narayana, N. (2014). The socio-economic impact of drought in Botswana. International Journal Environment Development,11(1), 43–60. Online ISSN: 2972-3698. Access Adress (28.07.2023): https://www.researchgate.net/profile/JamesJuana/publication/282132415_Socioeconomic_Impact_of_Drought_in_Botswana/links/560413b608aea25fce30b37e/Socioeconomic-Impact-of-Drought-in-Botswana.pdf
  • Kajla, M., Yadav, V. K., Khokhar, J., Singh, S., Chhokar, R. S., Meena, R. P. & Sharma, R. K. (2015). Increase in wheat production through management of abiotic stresses: A Review. Journal Applied and Natural Science, 7(2), 1070-1080. Online ISSN: 2231-5209. Access Address (28.07.2023): https://journals.ansfoundation.org/index.php/jans/article/view/733
  • Kaur, V., Behl, R.K., Shinano, T. & Osaki, M. (2008). Interacting effects of high temperature and drought stresses in wheat genotypes under semiarid tropics-an appraisal. Tropics, 17(3), 225-234. Online ISSN: 1882-5729. Access Address (28.07.2023): https://www.jstage.jst.go.jp/article/tropics/17/3/17_3_225/_article/-char/ja/
  • Kaur, G. & Asthir, B. (2017). Molecular responses to drought stress in plants. Biologia Plantarum, 61, 201–209. Online ISSN: 1573-8264. Access Address (28.07.2023): https://link.springer.com/article/10.1007/s10535-016-0700-9
  • Kocsy, G., Tari, I., Vankova, R., Zechmann, B., Gulyas, Z., Poor, P. & Galiba, G. (2013). Redox control of plant growth and development. Plant Science, 211, 77-91. Online ISSN: 1873-2259. Access Address (28.07.2023): https://www.sciencedirect.com/science/article/abs/pii/S016894521300160X?via%3Dihub
  • Koffler, B. E., Luschin-Ebengreuth, N., Stabentheiner, E., Mueller, M. & Zechmann, B. (2014). Compartment-specific response of antioxidants to drought stress in Arabidopsis. Plant Science, 227, 133-144. Online ISSN: 1873-2259. Access Adress (28.07.2023): https://www.sciencedirect.com/science/article/pii/S0168945214001873
  • Kowitcharoen, L., Wongs-Aree, C., Setha, S., Komkhuntod, R., Srilaong, V. & Kondo, S. (2015). Changes in abscisic acid and antioxidant activity in sugar apples under drought conditions. Scientia Horticulturae, 193, 1-6. Online ISSN: 1879-1018. Access Address (28.07.2023):https://www.sciencedirect.com/science/article/abs/pii/S0304423815300728?via%3Dihub
  • Lata, R., Chowdhury, S., Gond, S. K. & White, J. F. (2018). Induction of abiotic stress tolerance in plants by endophytic microbes. Letters in Applied Microbiology, 66 (4), 268-276. Online ISSN: 1472-765X. Access Address (28.07.2023): https://academic.oup.com/lambio/articleabstract/66/4/268/6698913?login=false
  • Lund, J., Medellin-Azuara, J., Durand, J. & Stone, K. (2018). Lessons from California's 2012–2016 drought. Journal Water Resources Planning Management,144(10), 04018067. Online ISSN: 1943-5452. Access Address (28.07.2023): https://ascelibrary.org/doi/full/10.1061/(ASCE)WR.19435452.0000984
  • Malinowski, D. P. & Belesky, D. P. (2000). Adaptations of endophyte–infected cool–season grasses to environmental stresses, mechanisms of drought and mineral stress tolerance. Crop Science, 40(4), 923–940. Online ISSN: 1435-0653. Access Address (28.07.2023):https://acsess.onlinelibrary.wiley.com/doi/abs/10.2135/cropsci2000.404923x
  • McCartney, L. & Lefsrud, M. (2018). Protected agriculture in axtreme environments: a review of controlled environment agriculture in tropical, arid, polar, and urban locations. Applied Engineering Agriculture, 34(2), 455–473. Online ISSN: 1943-7838. Access Address (28.07.2023): https://elibrary.asabe.org/abstract.asp?aid=48871
  • Mirajkar, S. J., Dalvi, S. G., Ramteke, S. D. & Suprasanna, P. (2019). Foliar application of gamma radiation processed chitosan triggered distinctive biological responses in sugarcane under water deficit stress conditions. International Journal Biological Macromolecules, 139, 1212–1223. Online ISSN: 1879-0003. Access Address (28.07.2023): https://www.sciencedirect.com/science/article/abs/pii/S014181301935603X?via%3Dihub
  • Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends Plant Science,11(1), 15–19. Online ISSN: 1878-4372. Access Address (28.07.2023): https://www.cell.com/trends/plantscience/fulltext/S13601385(05)00291-8
  • Moghaddam, M. S. H., Safaie, N., Soltani, J. & Hagh-Doust, N. (2021). Desert-adapted fungal endophytes induce salinity and drought stress resistance in model crops. Plant Physiology Biochemistry, 160, 225-238. Online ISSN: 1873-2690. Access Address (28.07.2023): https://www.sciencedirect.com/science/article/abs/pii/S0981942821000334?via%3Dihub
  • Nonami, H. (1998). Plant water relations and control of cell elongation at low water potentials. Journal of Plant Research,111(3), 373–382. Online ISSN: 1618-0860. Access Address (28.07.2023): https://link.springer.com/article/10.1007/BF02507801
  • Okunlola, G. O., Olatunji, O. A., Akinwale, R. O., Tariq, A. & Adelusi, A. A. (2017). Physiological response of the three most cultivated pepper species (Capsicum spp.) in Africa to drought stress imposed at three stages of growth and development. Scientia Horticulturae, 224, 198–205. Online ISSN: 1879-1018. Access Address (28.07.2023):https://www.sciencedirect.com/science/article/abs/pii/S030442381730359X?via%3Dihub
  • Pandey, P., Ramegowda, V. & Senthil-Kumar, M. (2015). Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Frontiers Plant Science, 6, 723. Online ISSN: 1664-462X. Access Address (28.07.2023):https://www.frontiersin.org/articles/10.3389/fpls.2015.00723/full
  • Paranetharan, M. S., Thirunavukkarasu, N., Rajamani, T. & Suryanarayanan, T. S. (2022). Biomass destructuring enzymes of fungal endophytes of mangrove roots. Current Research Environmental Applied Mycology (Journal of Fungal Biology), 12(1), 259–267. ISSN: 2229-2225. Access Address (28.07.2023): https://www.creamjournal.org/pdf/CREAM_12_1_16.pdf
  • Patkar, R. N. & Naqvi, N. I. (2017). Fungal manipulation of hormone-regulated plant defense. PLoS Pathogens,13(6), e1006334. 1553-7374. Online ISSN: 1553-7374. Access Address (28.07.2023):https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1006334
  • Perl, A., Perl-Treves, R., Galili, S., Aviv, D., Shalgi, E., Malkin, S. & Galun, E. (1993). Enhanced oxidative-stress defense in transgenic potato expressing tomato Cu, Zn superoxide dismutases. Theoretical and Applied Genetics, 85, 568–576. Online ISSN: 1432-2242. Access Address (28.07.2023): https://link.springer.com/article/10.1007/BF00220915
  • Prasad, P. V. V., Pisipati, S. R., Momčilović, I. & Ristic, Z. (2011). Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. Journal Agronomy Crop Science, 197(6), 430–441. Online ISSN: 1439-037X. Access Address (28.07.2023): https://onlinelibrary.wiley.com/doi/10.1111/j.1439-037X.2011.00477.x
  • Purahong, W. & Hyde, K. D. (2011). Effects of fungal endophytes on grass and non–grass litter decomposition rates. Fungal Diversity, 47, 1–7. Online ISSN: 1878-9129. Access Address (28.07.2023): https://link.springer.com/article/10.1007/s13225-010-0083-8
  • Rashmi, M., Kushveer, J. S. & Sarma, V. V. (2019). A worldwide list of endophytic fungi with notes on ecology and diversity. Mycosphere, 10(1), 798-1079. ISSN: 2077-7019. Access Address (28.07.2023): https://www.mycosphere.org/pdf/MYCOSPHERE_10_1_19.pdf
  • Reddy, A. R., Chaitanya, K. V. & Vivekanandan, M. (2004). Drought-induced response of photosynthesis and antioxidant metabolism in higher plants. Journal Plant Physiology, 161(11), 1189–1202. Online ISSN: 1618-1328. Access Address (28.07.2023): https://www.sciencedirect.com/science/article/abs/pii/S0176161704000422?via%3Dihub
  • Rho, H., Hsieh, M., Kandel, S. L., Cantillo, J., Doty, S. L. & Kim, S. H. (2018). Do endophytes promote the growth of host plants under stress? A meta-analysis on plant stress mitigation by endophytes. Microbial Ecology, 75, 407-418. Online ISSN: 1432-184X. Access Address (28.07.2023): https://link.springer.com/article/10.1007/s00248-017-1054-3.
  • Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S. & Mittler, R. (2004). When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiology, 134(4), 1683-1696. Online ISSN: 1532-2548. Access Address (28.07.2023): https://academic.oup.com/plphys/article/134/4/1683/6112374.
  • Roach, T. & Krieger-Liszkay, A. (2014). Regulation of photosynthetic electron transport and photoinhibition. Current Protein Peptide Science, 15(4), 351–362. ISSN: 1389-2037. Access Address (28.07.2023):https://www.ingentaconnect.com/content/ben/cpps/2014/00000015/00000004/art00005#.
  • Rodriguez, R. J., Henson, J., Van Volkenburgh, E., Hoy, M., Wright, L.,… Redman, R. S. (2008). Stress tolerance in plants via habitat-adapted symbiosis. ISME Journal, 2, 404–416. Online ISSN: 1751-7370. Access Address (28.07.2023): https://www.nature.com/articles/ismej2007106.
  • Rodriguez, R. J., White, J. F., Arnold, A. E. & Redman, R. S. (2009). Fungal endophytes: diversity and functional roles. New Phytologist, 182(2), 314-330. Online ISSN: 1469-8137. Access Address (28.07.2023):https://nph.onlinelibrary.wiley.com/doi/full/10.1111/j.14698137.2009.02773.x.
  • Sadeghi, F., Samsampour, D., Seyahooei, M. A., Bagheri, A. & Soltani, J. (2020). Fungal endophytes alleviate drought-induced oxidative stress in Mandarin (Citrus reticulata L.): toward regulating the ascorbate–glutathione cycle. Scientia Horticulturae, 261, 108991. Online ISSN: 1879-1018. Access Address (28.07.2023): https://www.sciencedirect.com/science/article/abs/pii/S0304423819308775?via%3Dihub
  • Sahin, U., Ekinci, M., Ors, S., Turan, M., Yildiz, S. & Yildirim, E. (2018). Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata). Scientia Horticulturae, 240, 196-204. Online ISSN: 1879-1018. Access Address (28.07.2023): https://www.sciencedirect.com/science/article/abs/pii/S0304423818304060?via%3Dihub
  • Saneoka, H., Moghaieb, R. E., Premachandra, G. S. & Fujita, K. (2004). Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relations in Agrostis palustris Huds. Environmental Experimental Botany, 52 (2), 131-138. Online ISSN: 1873-7307. Access Address (28.07.2023): https://www.sciencedirect.com/science/article/abs/pii/S0098847204000218?via%3Dihub
  • Sangamesh, M. B., Jambagi, S., Vasanthakumari, M. M., Shetty, N. J.,… Shaanker, U. R. (2017). Thermotolerance of fungal endophytes isolated from plants adapted to the Thar Desert, India. Symbiosis, 75, 135-147. Online ISSN: 1878-7665. Access Address (28.07.2023): https://link.springer.com/article/10.1007/s13199-017-0527-y
  • Santangelo, J. S., Turley, N. E. & Johnson, M. T. (2015). Fungal endophytes of Festuca rubra increase in frequency following long-term exclusion of rabbits. Botany, 93, 233-241. Online ISSN: 1480-3305. Access Address (28.07.2023): https://cdnsciencepub.com/doi/abs/10.1139/cjb-2014-0187
  • Schulz, B., Haas, S., Junker, C., Andree, N. & Schobert, M. (2015). Fungal endophytes are involved in multiple balanced antagonisms. Current Science, 109(1), 39-45. ISSN: 0011-3891. Access Adress (28.07.2023): https://www.jstor.org/stable/24905689
  • Shirdam, R., Zand, A. D., Nabibidhendi, G. & Mehrdadi, N. (2009). Enhanced biodegradation of hydrocarbons in the rhizosphere of plant species in semi–arid regions. Asian Journal Chemistry, 21(3), 2357-2368. ISSN: 0970-7077. Access Address (28.07.2023): https://www.cabdirect.org/cabdirect/abstract/20093257485
  • Shukla, N., Awasthi, R. P., Rawat, L. & Kumar, J. (2012). Biochemical and physiological responses of rice (Oryza sativa L.) as influenced by Trichoderma harzianum under drought stress. Plant Physiology and Biochemistry, 54, 78-88. Online ISSN: 1873-2690. Access Address (22.08.2023): https://www.sciencedirect.com/science/article/abs/pii/S0981942812000332?via%3Dihub
  • Simkin, A. J., Moreau, H., Kuntz, M., Pagny, G., Lin, C., Tanksley, S.,… McCarthy, J. (2008). An investigation of carotenoid biosynthesis in Coffea canephora and Coffea arabica. Journal Plant Physiology, 165(10), 1087-1106. Online ISSN: 1618-1328. Access Address (28.07.2023): https://www.sciencedirect.com/science/article/pii/S0176161707001770
  • Singla, J. & Krattinger, S. G. (2016). Biotic stress resistance genes in wheat. Wrigley, C. et al. (Ed.), Encyclopedia of Food Grains, Volume 4, (pp. 388-392). ISSN: 9780123947864. Amsterdam: Elsevier B.V.
  • Stovall, A. E. L., Shugart, H. & Yang, X. (2019). Tree height explains mortality risk during an intense drought. Nature Communications, 10, 1–6. Online ISSN: 2041-1723. Access Address (28.07.2023): https://www.nature.com/articles/s41467-019-12380-6
  • Suryanarayanan, T. S., Rajulu, G. & Vidal, S. (2018). Biological control through fungal endophytes: Gaps in knowledge hindering success. Current Biotechnology, 7(3), 185-193. ISSN: 2211-5501. Access Address (28.07.2023): https://www.ingentaconnect.com/content/ben/cbiot/2018/00000007/00000003/art00005
  • Talaat, N. B. & Shawky, B. T. (2015). Plant-microbe interaction and salt stress tolerance in plants. Managing salt tolerance in plants: molecular and genomic perspectives. M. A. Hossain and S. H. Wani (Ed.), Chapter 15 (pp. 267-289). Boca Raton: CRC Press/Taylor & Francis Group.
  • Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M.,… Kogel, K. H. (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings National Academy Sciences, 102(38), 13386-13391. Online ISSN: 2211-5501. Access Address (28.07.2023):https://www.pnas.org/doi/abs/10.1073/pnas.0504423102
  • Waraich, E. A. & Ahmad, R. (2010). Physiological responses to water stress and nitrogen management in wheat (Triticum aestivum L.): evaluation of gas exchange, water relations and water use efficiency. In Fourteenth International Water Technology Conference (IWTC 14), (pp. 46-51). Cairo, Egypt. Access address (28.07.2023):https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1587e0d8c116a1918eaa645deb1d1d6c045b42a4
  • Waser, N. M. & Price, M. V. (2016). Drought, pollen and nectar availability, and pollination success. Ecology, 97(6), 1400-1409. Online ISSN: 1939-9170. Access Address (28.07.2023): https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/15-1423.1
  • Verma, A. & Deepti, S. (2016). Abiotic stress and crop improvement: current scenario. Advances Plants Agriculture Research, 4, 149. ISSN: 2373-6402. Access Address (28.07.2023): https://doi.org/10.15406/apar.2016.04.00149
  • Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M. & Skz, A. (2016). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research, 184, 13-24. Online ISSN: 0944-5013. Access Address (28.07.2023):https://www.sciencedirect.com/science/article/pii/S0944501315300380
  • Zarea, M., Hajinia, S., Karimi, N., Goltapeh, E. M., Rejali, F. &Varma, A. (2012). Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biology Biochemistry, 45, 139-146. Online ISSN: 1879-3428. Access Address (28.07.2023): https://www.sciencedirect.com/science/article/pii/S0038071711003919
  • Zhang, S. H., Xu, X. F., Sun, Y. M., Zhang, J. L. & Li, C. Z. (2018). Influence of drought hardening on the resistance physiology of potato seedlings under drought stress. Journal Integrative Agriculture, 17(2), 336-347. Online ISSN: 2352-3425. Access Adress(28.07.2023):https://www.sciencedirect.com/science/article/pii/S2095311917617581
  • Zhang, Y., Ding, J., Wang, H., Su, L. & Zhao, C. (2020). Biochar addition alleviates the negative effects of drought and salinity stress on soybean productivity and water use efficiency. BMC Plant Biology, 20, 1-11. ISSN: 1471-2229. Access Address (28.07.2023): https://link.springer.com/article/10.1186/s12870-020-02493-2
  • Zolin, C. A., Rodrigues, R. & Renato de, A. R. (2015). Impact of climate change on water resources in agriculture. Impact of Climate Change on Water Resources in Agriculture (pp. 232). ISSN: 9781498706148. Boca Raton, FL, USA: CRC Press.
  • Zheng, W., Zeng, S., Bais, H., LaManna, J. M., Hussey, D. S., Jacobson, D. L. & Jin, Y. (2018). Plant growth-promoting rhizobacteria (PGPR) reduce evaporation and increase soil water retention. Water Resources Research, 54(5), 3673-3687. Online ISSN: 1944-7973. Access Address (28.07.2023): https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018WR022656