Published September 30, 2023 | Version CC BY-NC-ND 4.0
Journal article Open

Eye Disease Prediction Among Corporate Employees using Machine Learning Techniques

  • 1. Professor, Department of Computer Applications, Kongu Engineering College, Perundurai-638060, (Tamilnadu), India.
  • 2. PG Final Year, Department of Computer Applications, Kongu Engineering College, Perundurai-638060, (Tamilnadu), India.
  • 3. R. Dharani, PG Final Year, Department of Computer Applications, Kongu Engineering College, Perundurai-638060, (Tamilnadu), India.

Contributors

Contact person:

  • 1. Professor, Department of Computer Applications, Kongu Engineering College, Perundurai-638060, (Tamilnadu), India

Description

In the IT sector, employees use systems for more than 6 hs, so they are affected by many health problems. Mostly In the IT sector, employees are affected with eye diseases like eye strain, eye pain, burning sensation, double vision, blurring of vision, and frequent watering. The major goal of this research is to identify the different types of eye problems encountered, the symptoms present, and the population afflicted by eye diseases in order to accurately forecast outcomes using a Machine learning techniques for real-time data sets.

Notes

Additional Notes: Published By: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP) © Copyright: All rights reserved.

Files

C78950912323.pdf

Files (471.3 kB)

Name Size Download all
md5:484c57a0302b43f83b375305de4c0363
471.3 kB Preview Download

Additional details

Related works

Is cited by
Journal article: 10.35940/ijese.C7895.09111023 (DOI)

References

  • An, G.; Omodaka, K.; Tsuda, S.; Shiga, Y.; Takada, N.; Kikawa, T.; Nakazawa, T.; Yokota, H.; Akiba, M. Comparison of machine-learning classification models for glaucoma management. J. Health. Eng. 2018, 2018. https://doi.org/10.1155/2018/6874765
  • Agrawal, P.; Madaan, V.; Kumar, V. Fuzzy rule-based medical expert system to identify the disorders of eyes, ENT and liver. Int. J. Adv. Intell. Paradig. 2015, 7, 352–367. https://doi.org/10.1504/IJAIP.2015.073714
  • Sample, P.A.; Boden, C.; Zhang, Z.; Pascual, J.; Lee, T.W.; Zangwill, L.M.; inreb, R.N.; Crowston, J.G.; Hoffmann, E.M.; Medeiros, F.A.; et al. Unsupervised machine learning with independent component analysis to identify areas of progression in glaucomatous visual fields. Investig. Ophthalmol. Vis. Sci. 2005, 46, 3684–3692. https://doi.org/10.1167/iovs.04-1168
  • Imberman, S.P.; Ludwig, I.; Zelikovitz, S. Using Decision Trees to Find Patterns in an Ophthalmology Dataset. In Proceedings of the FLAIRS Conference, Palm Beach, FL, USA, 18–20 May 2011.
  • Arbelaez, M.C.; Versaci, F.; Vestri, G.; Barboni, P.; Savini, G. Use of a support vector machine for keratoconus and subclinical keratoconus detection by topographic and tomographic data. Ophthalmology 2012, 119, 2231–2238. https://doi.org/10.1016/j.ophtha.2012.06.005
  • Fageeri, S.O.; Ahmed, S.M.M.; Almubarak, S.A.; Muazu, A.A. Eye refractive error classification usingmachine learning techniques. In Proceedings of the IEEE International Conference on Communication,Control, Computing and Electronics Engineering, Khartoum, Sudan, 16–17 January 2017; pp. 1–6. https://doi.org/10.1109/ICCCCEE.2017.7867660
  • Organization, W.H. International Classification of Diseases (ICD). Available online: http://www.who.int/ classifications/icd/ICD10Volume2_en_2010.pdf (accessed on 1 January 2017).
  • Waudby, C.J.; Berg, R.L.; Linneman, J.G.; Rasmussen, L.V.; Peissig, P.L.; Chen, L.; McCarty, C.A. Cataract research using electronic health records. BMC Ophthalmol. 2011, 11, 32. https://doi.org/10.1186/1471-2415-11-32
  • Sullivan, B.D.; Crews, L.A.; Messmer, E.M.; Foulks, G.N.; Nichols, K.K.; Beginninger, P.; Geerling, G.; Figueiredo, F.; Lemp, M.A. Correlations beten commonly used objective signs and symptoms for the diagnosis of dry eye disease: Clinical implications. Acta Ophthalmol. 2014, 92, 161–166. https://doi.org/10.1111/aos.12012
  • Moccia, S.; De Momi, E.; El Hadji, S.; Mattos, L.S. Blood vessel segmentation algorithms—Review of methods, datasets and evaluation metrics. Comput. Methods Programs Biomed. 2018, 158, 71–91. https://doi.org/10.1016/j.cmpb.2018.02.001
  • Fraz, M.M.; Remagnino, P.; Hoppe, A.; Uyyanonvara, B.; Rudnicka, A.R.; On, C.G.; Barman, S.A. Blood vessel segmentation methodologies in retinal images–a survey. Comput. Methods Programs Biomed. 2012, 108, 407–433. https://doi.org/10.1016/j.cmpb.2012.03.009
  • Quellec, G.; Lamard, M.; Erginay, A.; Chabouis, A.; Massin, P.; Cochener, B.; Cazuguel, G. Automatic detection of referral patients due to retinal pathologies through data mining. Med. Image Anal. 2016, 29, 47–64. https://doi.org/10.1016/j.media.2015.12.006
  • Burgansky-Eliash, Z.; Wollstein, G.; Chu, T.; Ramsey, J.D.; Glym, C.; Noecker, R.J.; Ishikawa, H.; Schuman, J.S. Optical coherence tomography machine learning classifiers for glaucoma.

Subjects

ISSN: 2319–6378 (Online)
https://portal.issn.org/resource/ISSN/2319-6378#
Retrieval Number: 100.1/ijese.C78950912323
https://www.ijese.org/portfolio-item/C78950912323/
Journal Website: www.ijese.org
https://www.ijese.org/
Publisher: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP)
https://www.blueeyesintelligence.org/