Published September 13, 2023 | Version v1
Journal article Open

Upcycling of PET oligomers from chemical recycling processes to PHA by microbial co-cultivation

Description

Polyethylene terephthalate (PET) is the most widely consumed polyester plastic and can be recycled by many chemical processes, of which glycolysis is most cost-effective and commercially viable. However, PET glycolysis produces oligomers due to incomplete depolymerization, which are undesirable by-products and require proper disposal. In this study, the PET oligomers from chemical recycling processes were completely bio-depolymerized into monomers and then used for the biosynthesis of biodegradable plastics polyhydroxyalkanoates (PHA) by cocultivation of two engineered microorganisms Escherichia coli BL21 (DE3)-LCCICCG and Pseudomonas putida KT2440-ΔRDt-ΔZP46C-M. E. coli BL21 (DE3)-LCCICCG was used to secrete the PET hydrolase LCCICCG into the medium to directly depolymerize PET oligomers. P. putida KT2440-ΔRDt-ΔZP46C-M that mastered the metabolism of aromatic compounds was engineered to accelerate the hydrolysis of intermediate products mono-2- (hydroxyethyl) terephthalate (MHET) by expressing IsMHETase, and biosynthesize PHA using ultimate products terephthalate and ethylene glycol depolymerized from the PET oligomers. The population ratios of the two microorganisms during the co-cultivation were characterized by fluorescent reporter system, and revealed the collaboration of the two microorganisms to bio-depolymerize and bioconversion of PET oligomers in a single process. This study provides a biological strategy for the upcycling of PET oligomers and promotes the plastic circular economy.

Files

1-s2.0-S0956053X23005603-main.pdf

Files (4.4 MB)

Name Size Download all
md5:3e6be3e43b0e90b9f33ba51e492bcfdf
4.4 MB Preview Download

Additional details

Funding

BioICEP – Bio Innovation of a Circular Economy for Plastics 870292
European Commission