Street Fashion Style (SFS) dataset
Description
The Street Fashion Style (SFS) dataset is a new street photos dataset collected from Chictopia, where a total of 293,105 user posts are crawled. In each post, a user usually publishes the photograph of her/his worn outfit along with associated tags. Generally, these tags include current season, the suitable occasion, fashion style, the detailed garment information (e.g. category, color and brand), the geographical and year information.
The dataset can be applied, but not limited to the following research areas:
- multi-task learning
- feature embedding learning
- fashion-related classification
- fashion trends analysis
Please cite the following paper if you use the SFS dataset in your work (papers, articles, reports, books, software, etc):
- X. Gu, Y. Wong, P. Peng, L. Shou, G. Chen, M. Kankanhalli
Understanding Fashion Trends from Street Photos via Neighbor-Constrained Embedding Learning
ACM Multimedia, 2017.
http://doi.org/10.1145/3123266.3123441
After downloading all parts (images-*), extract using: cat images-* | tar zx
Alternate download mirror - https://pan.baidu.com/s/1nvA1IPz
Files
qual_data.zip
Files
(27.4 GB)
Name | Size | Download all |
---|---|---|
md5:eda433047fe8be193315910458798fe3
|
1.0 GB | Download |
md5:47a50712c733ebe524ad01f56a500a24
|
1.0 GB | Download |
md5:9cd6ca9b4d56ba6d5f957c519b89b42f
|
1.0 GB | Download |
md5:3e379f4afb194bce11bec1ca7158ca98
|
1.0 GB | Download |
md5:31cb98e16448aac77b1a2fc5c4a14156
|
1.0 GB | Download |
md5:641f6756429ab7779c797c0db4e8eca1
|
1.0 GB | Download |
md5:52b3016928a34a8279ce2ee639b8e27d
|
1.0 GB | Download |
md5:19c3b382a464a83332c00893c7f40fc7
|
1.0 GB | Download |
md5:9b5f85f25305da90c96d246fd0890851
|
1.0 GB | Download |
md5:1f378ac9c2108aa62826f05255dd4cc8
|
1.0 GB | Download |
md5:0bb57d5d1029859db66cdaf2b760a3e0
|
1.0 GB | Download |
md5:7f24bc75487610f8e7fe8680eec4ab7a
|
1.0 GB | Download |
md5:ce2c1d09e84c2792ba3c7325c4d8ca79
|
1.0 GB | Download |
md5:9c90d47f0ed75ffe8d69179b04a658a0
|
1.0 GB | Download |
md5:7696a83c1c042a9e441fba9a678e780a
|
1.0 GB | Download |
md5:1d30428f72a3329f143e7ce513936c98
|
1.0 GB | Download |
md5:c9627755df9889030ba5e065ec8bfb32
|
1.0 GB | Download |
md5:c862c5875a9745608ed66b93060d4332
|
1.0 GB | Download |
md5:38d6ce61efdc52f9578f643dd43072a6
|
1.0 GB | Download |
md5:1c55cb6cd219287e554cc9234e4f0b00
|
1.0 GB | Download |
md5:f9174155e2a007cb8b353e067f5bce09
|
1.0 GB | Download |
md5:b7654d4bb05272b58fe084102422f832
|
1.0 GB | Download |
md5:702cb75efcf20d60f51438fcc8221d1e
|
1.0 GB | Download |
md5:4bd6b5d6e5d63446e140ea82f3c39a1b
|
1.0 GB | Download |
md5:0a354fcde10ff327763ea1077ce895ee
|
1.0 GB | Download |
md5:b4eeb832c0e01f3f2d499417308499eb
|
1.0 GB | Download |
md5:ee0e963fbe05eca8f38d8ff80e28b8d3
|
733.4 MB | Download |
md5:8bbb64753e5b1ca362860c1e9f095022
|
931.8 kB | Preview Download |
md5:be955b688ab634ee2690a01f5576fd61
|
2.6 kB | Preview Download |
md5:0b336eac4ad72272d49f81e04dd101e2
|
47.5 MB | Preview Download |
Additional details
Related works
- Is part of
- 10.1145/3123266.3123441 (DOI)