Published October 6, 2023 | Version v0.1
Dataset Open

Observational constraints of fire, environmental and anthropogenic on pantropical tree cover - Data

  • 1. UK Centre for Ecology & Hydrology
  • 2. Imperial College London
  • 3. University of Stirling
  • 4. UK Met Office
  • 5. Senckenberg Biodiversity and Climate Research Centre
  • 6. Suncorp Group
  • 7. Cognizant Benelux BV
  • 8. Wageningen University

Description

Data used for analysis in "Explainable Clustering Applied to the Definition of Terrestrial Biome" - using Decision Tree and Clustering techniques to identify biomes.

Land surface properties:

  • TreeCover - Vegetation Continuous Fields (VCF) collection 6 fractional tree cover from 1, regridded as per 2.
  • urban cover from the History Database of the Global Environment, Version 3.1 (HYDE)  3,4
  • crop cover (from HYDE)
  • pas - Pasture Cover (from HYDE)PopDen (population density from HYDE)
  • BurntArea_xxxxx - Burnt area with xxxx denoting different products, provided by fireMIP 5–7:
    • GFED_four: Global Fire Emissions Database, Version 4 (GFED4)  8
    • GFED_four_s: Global Fire Emissions Database, Version 4.1, including small fires (GFEDv4.1) 9
    • MCD_forty_five: MCD45 10
    • Meris: Fire_CCI4.0 11
    • MODIS: Fire_CCI5.1 12

Climate:

  • MAP_xxx - Mean annual precipitation where xxx denotes data source:
    • CMORPH 13,14
    • CRU from version 4.03 of the Climatic Research Unit Time Series high-resolution gridded dataset (CRU TS v4.01) 15
    • GPCC: 16
    • MSWEP: 17
  • MAT - Mean annual temperature from CRU)
  • MConc_xxx – Mean annual concentration of rainfall as defined by 18, where xxx denotes precip data source (see “MAP_xxx”)
  • MADD_xxx- Mean annual fractional dry days from CRU - i.e. seasonality of rainfall), where xxx denotes precip data source (see “MAP_xxx”)
  • MDDM_xxx – Mean fractional dry days of the driest month.
  • MADM_xxx – Mean annual precipitation of the driest month.
  • MTWM - Mean Maximum Temperature of the warmest month from CRU
  • MTCM - Mean minimum temperature of the coldest month from CRU
  • SW1 - direct downwards SW simulated using the SLASH model using CRU cloud cover
  • SW2 - diffuse downwards SW simulated using the SLASH model using CRU cloud cover
  • MaxWind (Mean Max Windspeed from CRU-(National Centers for Environmental Prediction 15

‘output_summary’ contains framework output. There are several directories for different experiments, each containing a netcdf file. Along with standard latitude and longitude,each file contains ‘model_level_number’ dimension, with each layer representing the 1, 5, 10, 25, 50, 75, 90, 95 and 99% quantiles of the model posterior. The folder represents the experiment:

  • Control – standard full model reconstruction
  • noHumans – without human influence (from crop, pasture, population density or urban influence)
  • noMortality – without disturbance stress (burnt area, wind, heat stress, rainfall seasonality
  • noMAP – without mean annual precip influence.
  • noNoneMAT – without mean annual temperature influence.
  • noFire – tree cover without the influence of fire
  • noDrought – without the influence of rainfall distribution
  • noTasMort – without mortality from heat stress
  • noWind – without influence from max. windspeed
  • noPas – without exclusion from pasture
  • noCrop – without exclusion from crop
  • noPop – without reduction from population density
  • noUrban – without exclusion from urban
  • firePlus1pc – tree cover with burnt area was 1% higher.

 

References

 

1.      Dimiceli, C. & Others. MOD44B MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2015). Preprint at (2015).

2.      Kelley, D. I. et al. How contemporary bioclimatic and human controls change global fire regimes. Nat. Clim. Chang. 9, 690–696 (2019).

3.      Klein Goldewijk, K., Goldewijk, K. K., Beusen, A., Van Drecht, G. & De Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 20, 73–86 (2010).

4.      Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change vol. 109 117–161 Preprint at https://doi.org/10.1007/s10584-011-0153-2 (2011).

5.      Hantson, S., Arneth, A., Harrison, S. P. & Kelley, D. I. The status and challenge of global fire modelling. (2016).

6.      Hantson, S. et al. Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project. Geoscientific Model Development vol. 13 3299–3318 Preprint at https://doi.org/10.5194/gmd-13-3299-2020 (2020).

7.      Rabin, S. S., Melton, J. R. & Lasslop, G. The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions. Geoscientific Model (2017).

8.      Giglio, L., Randerson, J. T. & van der Werf, G. R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosci. 118, 317–328 (2013).

9.      van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).

10.    Roy, D. P., Boschetti, L., Justice, C. O. & Ju, J. The collection 5 MODIS burned area product — Global evaluation by comparison with the MODIS active fire product. Remote Sensing of Environment vol. 112 3690–3707 Preprint at https://doi.org/10.1016/j.rse.2008.05.013 (2008).

11.    Alonso-Canas, I. & Chuvieco, E. Global burned area mapping from ENVISAT-MERIS and MODIS active fire data. Remote Sens. Environ. 163, 140–152 (2015).

12.    Chuvieco, E. et al. Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies. Earth System Science Data vol. 10 2015–2031 Preprint at https://doi.org/10.5194/essd-10-2015-2018 (2018).

13.    Joyce, R. J., Janowiak, J. E., Arkin, P. A. & Xie, P. CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeorol. 5, 487–503 (2004).

14.    Marthews, T. R., Blyth, E. M., Martínez-de la Torre, A. & Veldkamp, T. I. E. A global-scale evaluation of extreme event uncertainty in the eartH2Observe project. Hydrol. Earth Syst. Sci. 24, 75–92 (2020).

15.    Harris, I. C. & Jones, P. D. CRU TS4.03: Climatic Research Unit (CRU) Time-Series (TS) version 4.03 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901- Dec. 2018). (2019) doi:10.5285/10D3E3640F004C578403419AAC167D82.

16.    Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A. & Ziese, M. GPCC Full Data Monthly Product Version 2018 at 0.5◦: Monthly Land-Surface Precipitation from Rain-Gauges Built on GTS-Based and Historical Data. Deutscher Wetterdienst: Offenbach am Main, Germany (2018).

17.    Beck, H. E., Van Dijk, A. & Levizzani, V. MSWEP: 3-hourly 0.25 global gridded precipitation (1979-2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. (2017).

18.    Kelley, D. I., Harrison, S. P., Wang, H. & Simard, M. A comprehensive benchmarking system for evaluating global vegetation models. (2013).

Files

Files (361.3 MB)

Name Size Download all
md5:3f3e4d46c5f783519f41d1673875b878
353.2 kB Download
md5:82e4c746be48dce30cd96b1abd0d709d
353.2 kB Download
md5:34683956571d5c58c9de3ccc22b759fd
353.2 kB Download
md5:623125c1e6c181a8a42bf4f26a77fffd
353.2 kB Download
md5:ebf383dca97a53fb87c29db355158041
353.2 kB Download
md5:ccaae39fa89590d42ddf95512ac8d0dc
353.3 kB Download
md5:05474d8e29280555ddf572f3a0684153
353.2 kB Download
md5:716db1c5adc64a95673f4197230c3347
353.3 kB Download
md5:5c1d2cf8bfa8dcc338a988eb162107d6
353.0 kB Download
md5:b5ca5a30012bc677af9fa108732c830f
353.3 kB Download
md5:dbac8c0a4e28b5c90a5cc74606e58369
353.2 kB Download
md5:88172163b03af9808bc1518e4ed5abb7
353.3 kB Download
md5:cdf7bdefc09cca5c32cf2dfbaa24556b
353.0 kB Download
md5:0a0137ef5efd2258c5cac609235b5c46
353.3 kB Download
md5:a1385a7212d1f6cfa3a852b7184f9ea7
353.2 kB Download
md5:29fb195cd79cc9a1aee2bff844561d09
353.3 kB Download
md5:b5c86b0d681703e2627aabba67265764
353.0 kB Download
md5:1970560e96e5822d72243849431f7218
353.2 kB Download
md5:7d28bc70399513f498ec658f157b1c7b
353.2 kB Download
md5:2e241f27786ff8bb8857bbf3f44554d1
353.3 kB Download
md5:3268c6bb15c26e9554e551ab60b9622f
353.2 kB Download
md5:255593e8d75e0881e2d2b2855c124c95
353.3 kB Download
md5:7a029e042e5baa1919f59594733974fd
353.0 kB Download
md5:c38a48aafd72f7f701286106860cceb6
353.3 kB Download
md5:bfc46afe44f4534557985daf5ae29fb4
353.2 kB Download
md5:dccace3126a38ad48f3626e3f2861176
353.3 kB Download
md5:aa661c96ef353b6658fde69098a432b3
353.0 kB Download
md5:7573d4433dcb008e42042460e463fdc5
353.2 kB Download
md5:3827a4fc51ba58c062fe565627c88661
353.2 kB Download
md5:9df3abfad027088bf3e45057fb4a2153
348.9 MB Download
md5:d39cc3399554dc8099aec233577ec90a
353.2 kB Download
md5:a5b7e691787cba3180131b4c1a9636c0
353.2 kB Download
md5:83e68809053018fd29a9fd776f59fafd
353.2 kB Download
md5:765ea3a05fe876e64986c9852bd321be
353.2 kB Download
md5:fc009f80925b5a0d36234cc0f0c6d89c
353.2 kB Download
md5:93ea9e1b28ddecfd8bafbf85841c7f99
353.2 kB Download

Additional details

Funding

UK Research and Innovation
The UK Earth system modelling project. NE/N017951/1
UK Research and Innovation
ForeSight: Predicting and monitoring drought-linked forest growth decline across Europe NE/S010041/1
European Commission
REALM - Re-inventing Ecosystem And Land-surface Models 787203