Published July 31, 2023 | Version v1
Journal article Restricted

Future of DNA-based insect monitoring

Description

Chua, Physilia Y.S., Bourlat, Sarah J., Ferguson, Cameron, Korlevic, Petra, Zhao, Leia, Ekrem, Torbjørn, Meier, Rudolf, Lawniczak, Mara K.N. (2023): Future of DNA-based insect monitoring. Trends in Genetics 39 (7): 531-544, DOI: 10.1016/j.tig.2023.02.012, URL: http://dx.doi.org/10.1016/j.tig.2023.02.012

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFF9C91AFFBDFFB8FFC0FFBBFFB9FFAA

References

  • 1. Hallmann, C.A. et al. (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12, e0185809
  • 2. Wagner, D.L. (2020) Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457-480
  • 3. Sanchez-Bayo, F. and Wyckhuys, K.A.G. (2019) Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8-27
  • 4. Wagner, D.L. et al. (2021) Insect decline in the Anthropocene: death by a thousand cuts. Proc. Natl. Acad. Sci. U. S. A. 118, e2023989118
  • 5. Yang,L.H. and Gratton,C.(2014) Insects as drivers of ecosystem processes.Curr. Opin. Insect. Sci. 2, 26-32
  • 6. Bruhl, C.A. et al. (2021) Direct pesticide exposure of insects in nature conservation areas in Germany. Sci. Rep. 11, 24144
  • 7. Stuligross, C. and Williams, N.M. (2021) Past insecticide exposure reduces bee reproduction and population growth rate. Proc. Natl. Acad. Sci. U. S. A. 118, e2109909118
  • 8. Outhwaite, C.L. et al. (2022) Agriculture and climate change are reshaping insect biodiversity worldwide. Nature 605, 97-102
  • 9. Bradshaw, C.J.A. et al. (2016) Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 7, 12986
  • 10. McCravy, K.W. (2018) A review of sampling and monitoring methods for beneficial arthropods in agroecosystems. Insects 9, 170
  • 11. Hodgetts, J. et al. (2016) DNA barcoding for biosecurity: case studies from the UK plant protection program. Genome 59, 1033-1048
  • 12. Piper, A.M. et al. (2019) Prospects and challenges of implementing DNA metabarcoding for high-throughput insect surveillance. Gigascience 8, giz092
  • 13. Chua, P.Y.S. et al. (2021) Metagenomics: a viable tool for reconstructing herbivore diet. Mol. Ecol. Resour. 21, 2249-2263
  • 14. Willerslev, E. et al. (2007) Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science 317, 111-114
  • 15. Thomsen,P.F. et al. (2009) Non-destructive sampling of ancient insect DNA. PLoS One 4, e5048
  • 16. Smith, A.D. et al. (2021) Recovery and analysis of ancient beetle DNA from subfossil packrat middens using high-throughput sequencing. Sci. Rep. 11, 12635
  • 17. Kharouba,H.M. et al.(2018) Using insect natural history collections to study global change impacts: challenges and opportunities. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 374, 20170405
  • 18. Speed, J.D.M. et al. (2022) A regionally coherent ecological fingerprint of climate change, evidenced from natural history collections. Ecol. Evol. 12, e9471
  • 19. Yu, D.W. et al. (2012) Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods Ecol. Evol. 3, 613-623
  • 20. Elbrecht, V. et al. (2017) Assessing strengths and weaknesses of DNA metabarcoding-based macroinvertebrate identification for routine stream monitoring. Methods Ecol. Evol.8, 1265-1275
  • 21. Kirse, A. et al. (2022) Comparison of destructive and nondestructive DNA extraction methods for the metabarcoding of arthropod bulk samples. Mol. Ecol. Resour. 23, 92-105
  • 22. Santos, D. et al. (2018) A non-destructive enzymatic method to extract DNA from arthropod specimens: implications for morphological and molecular studies. PLoS One 13, e0192200
  • 23. Moriniere, J. et al. (2016) Species identification in Malaise trap samples by DNA barcoding based on NGS technologies and a scoring matrix. PLoS One 11, e0155497
  • 24. Kirse, A. et al. (2021) Metabarcoding Malaise traps and soil eDNA reveals seasonal and local arthropod diversity shifts. Sci. Rep. 11, 10498
  • 25. Wagele, J.W. et al. (2022) Towards a multisensor station for automated biodiversity monitoring. Basic Appl. Ecol. 59, 105-138
  • 26. McCracken, G.F. et al. (2012) Bats track and exploit changes in insect pest populations. PLoS One 7, e43839
  • 27. Paula, D.P. et al. (2016) Uncovering trophic interactions in arthropod predators through DNA shotgun-sequencing of gut contents. PLoS One 11, e0161841
  • 28. Srivathsan, A. et al. (2019) Boosting natural history research via metagenomic clean-up of crowdsourced feces. PLoS Biol. 17, e3000517
  • 29. Yang, C. et al. (2014) Using metabarcoding to ask if easily collected soil and leaf-litter samples can be used as a general biodiversity indicator. Ecol. Indic. 46, 379-389
  • 30. Marquina,D.et al.(2019) Establishing arthropod community composition using metabarcoding:surprising inconsistenciesbetween soil samples and preservative ethanol and homogenate from Malaise trap catches.Mol. Ecol. Resour. 19, 1516-1530
  • 31. Thomsen, P.F. et al. (2012) Monitoring endangered freshwater biodiversity using environmental DNA. Mol. Ecol. 21, 2565-2573
  • 32. Kirse, A. et al. (2021) Unearthing the potential of soil eDNA metabarcoding - towards best practice advice for invertebrate biodiversity assessment. Front. Ecol. Evol. 9, 630560
  • 33. Yasashimoto,T. et al.(2021) Environmental DNA detection of an invasive ant species (Linepithema humile) from soil samples.Sci. Rep. 11, 10712
  • 34. Taberlet, P. et al. (2018) Environmental DNA: For Biodiversity Research and Monitoring, Oxford University Press
  • 35. Valentin, R.E. et al. (2020) Moving eDNA surveys onto land: strategies for active eDNA aggregation to detect invasive forest insects. Mol. Ecol. Resour. 20, 746-755
  • 36. Aylagas, E. et al. (2014) Environmental status assessment using DNA metabarcoding: towards a genetics based Marine Biotic Index (gAMBI). PLoS One 9, e90529
  • 37. Aylagas, E. et al. (2016) Benchmarking DNA metabarcoding for biodiversity-based monitoring and assessment. Front. Mar. Sci. 3, 96
  • 38. Madden, A.A. et al. (2016) The diversity of arthropods in homes across the United States as determined by environmental DNA analyses. Mol. Ecol. 25, 6214-6224
  • 39. Thomsen, P.F. and Sigsgaard, E.E. (2019) Environmental DNA metabarcoding of wild flowers reveals diverse communities of terrestrial arthropods. Ecol. Evol. 9, 1665-1679
  • 40. Gomez, N.G. et al. (2022) Assessing flower-visiting arthropod diversity in apple orchardsthrough metabarcoding of environmental DNA from flowers and visual census. Environ. DNA 5, 117-131
  • 41. Gregoric, M. et al. (2022) Spider webs as eDNA samplers: biodiversity assessment across the tree of life. Mol. Ecol. Resour. 22, 2534-2545
  • 42. Macher, T.-H. et al. (2022) It' s raining species: rainwash eDNA metabarcoding as a minimally invasive method to assess tree canopy invertebrate diversity. Environ. DNA 5, 3-11
  • 43. Krehenwinkel, H. et al. (2022) Environmental DNA from archived leaves reveals widespread temporal turnover and biotic homogenization in forest arthropod communities. eLife 11, e78521
  • 44. Krehenwinkel, H. et al. (2022) The bug in a teacup - monitoring arthropod-plant associations with environmental DNA from dried plant material. Biol. Lett. 18, 20220091
  • 45. Campbell, C.D. et al. (2022) Detection of a cryptic terrestrial insect using novel eDNA collection techniques. Environ. DNA 4, 820-829
  • 46. Pumkaeo, P. et al. (2021) Detection and monitoring of insect traces in bioaerosols. PeerJ 9, e10862
  • 47. Roger, F. et al. (2022) Airborne environmental DNA metabarcoding for the monitoring of terrestrial insects - a proof of concept from the field. Environ. DNA 4, 790-807
  • 48. Velasco, D. et al. (2015) Biodiversity conservation research challenges in the 21st century:a review of publishing trends in 2000 and 2011. Environ. Sci. Policy 54, 90-96
  • 49. Hebert, P.D.N. et al. (2003) Biological identifications through DNA barcodes. Proc. Biol. Sci. 270, 313-321
  • 50. Liu, M. et al. (2020) Apractical guide to DNA metabarcoding for entomological ecologists. Ecol. Entomol. 45, 373-385
  • 51. Elbrecht, V. et al. (2021) Abright idea - metabarcoding arthropods from light fixtures. PeerJ 9, e11841
  • 52. Goldberg,C.S.et al. (2016) Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol. Evol.7, 1299-1307
  • 53. Patrick, H.J.H. et al. (2016) Cooled propylene glycol as a pragmatic choice for preservation of DNA from remote fieldcollected diptera for next-generation sequence analysis. J. Econ. Entomol. 109, 1469-1473
  • 54. Ballare, K.M. et al. (2019) Utilizing field collected insects for next generation sequencing: effects of sampling, storage, and DNA extraction methods. Ecol. Evol. 9, 13690-13705
  • 55. Majaneva, M. et al. (2018) Choice of DNA extraction method affects DNA metabarcoding of unsorted invertebrate bulk samples. Metabarcoding Metagenom. 2, e26664
  • 56. Freeland, J.R. (2017) The importance of molecular markers and primer design when characterizing biodiversity from environmental DNA. Genome 60, 358-374
  • 57. Alberdi, A. et al. (2018) Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods Ecol. Evol. 9, 134-147
  • 58. Andujar, C. et al. (2018) Why the COI barcode should be the community DNA metabarcode for the metazoa. Mol. Ecol. 27, 3968-3975
  • 59. Krehenwinkel, H. et al. (2017) Estimating and mitigating amplification bias in qualitative and quantitative arthropod metabarcoding. Sci. Rep. 7, 17668
  • 60. CarOe, C. and Bohmann, K. (2020) Tagsteady:a metabarcoding library preparation protocol to avoid false assignment of sequences to samples. Mol. Ecol. Resour.20, 1620-1631
  • 61. Schnell, I.B. et al. (2015) Tag jumps illuminated - reducing sequence-to-sample misidentifications in metabarcoding studies. Mol. Ecol. Resour. 15, 1289-1303
  • 62. Bohmann, K. et al. (2022) Strategies for sample labelling and library preparation in DNA metabarcoding studies. Mol. Ecol. Resour. 22, 1231-1246
  • 63. Greenfield, P. et al. (2019) Kelpie: generating full-length 'amplicons' from whole-metagenome datasets.PeerJ 6, e6174
  • 64. Verkuil, Y.I. et al. (2022) DNA metabarcoding quantifies the relative biomass of arthropod taxa in songbird diets: validation with camera-recorded diets. Ecol. Evol. 12, e8881
  • 65. Ji, Y. et al. (2020) SPIKEPIPE: a metagenomic pipeline for the accurate quantification of eukaryotic species occurrences and intraspecific abundance change using DNA barcodes or mitogenomes. Mol. Ecol. Resour. 20, 256-267
  • 66. Luo, M. et al. (2022) Extracting abundance information from DNA-based data. Mol. Ecol. Resour. 23, 174-189
  • 67. Dorazio, R.M. and Royle, J.A. (2005) Estimating size and composition of biological communities by modeling the occurrence of species. J. Am. Stat. Assoc. 100, 389-398
  • 68. Dorazio, R.M. et al. (2006) Estimating species richness and accumulation by modeling species occurrence and detectability. Ecology 87, 842-854
  • 69. Buxton, A. et al. (2021) Optimising sampling and analysis protocols in environmental DNA studies. Sci. Rep. 11, 11637
  • 70. Ovaskainen, O. et al. (2017) How to make more out of community data? Aconceptual framework and its implementation as models and software. Ecol. Lett. 20, 561-576
  • 71. Abrego, N. et al. (2021) Accounting for species interactions is necessary for predicting how arctic arthropod communities respond to climate change. Ecography 44, 885-896
  • 72. Wiemers, M. and Fiedler, K. (2007) Does the DNA barcoding gap exist? - Acase study in blue butterflies (Lepidoptera: Lycaenidae). Front. Zool. 4, 8
  • 73. Hebert, P.D.N. et al. (2018) A sequel to Sanger: amplicon sequencing that scales. BMC Genom. 19, 219
  • 74. Meier, R. et al. (2016) $1 DNA barcodes for reconstructing complex phenomes and finding rare species in specimen-rich samples. Cladistics 32, 100-110
  • 75. Kaye, J. et al. (2009) Data sharing in genomics - re-shaping scientific practice. Nat. Rev. Genet. 10, 331-335
  • 76. Yeo, D. et al. (2021) Mangroves are an overlooked hotspot of insect diversity despite low plant diversity. BMC Biol. 19, 202
  • 77. Seymour,M. et al. (2022) Arthropod beta-diversity is spatially and temporally structured by latitude. Res. Sq. Published online October 27, 2022. http: //dx.doi.org/10.21203/rs. 3.rs-2180975/v1
  • 78. Fernandez-Triana, J.L. (2022) Turbo taxonomy approaches:lessons from the past and recommendations for the future based on the experience with Braconidae (Hymenoptera) parasitoid wasps. Zookeys 1087, 199-220
  • 79. Hausmann, A. et al. (2020) GBOL III: dark taxa. iBOL Barcode Bull. 10
  • 80. Srivathsan, A. et al. (2022) Global convergence of dominance and neglect in flying insect diversity. BioRxiv Published online August 4, 2022. https://doi.org/10.1101/2022.08.02.502512
  • 81. Engel, M.S. et al. (2021) The taxonomic impediment: a shortage of taxonomists, not the lack of technical approaches. Zool. J. Linnean Soc. 193, 381-387
  • 82. Riedel, A. et al. (2013) Integrative taxonomy on the fast track - towards more sustainability in biodiversity research. Front. Zool. 10, 15
  • 83. Hartop, E. et al. (2022) Towards large-scale integrative taxonomy (LIT): resolving the data conundrum for dark taxa. Syst. Biol. 71, 1404-1422
  • 84. McClanahan, T.R. and Rankin, P.S. (2016) Geography of conservation spending, biodiversity, and culture. Conserv. Biol. 30, 1089-1101
  • 85. Grant, D.M. et al. (2021) The future of DNA barcoding: reflections from early career researchers. Diversity 13, 313
  • 86. Janzen,D. and Hallwachs,W.(2019) How a tropical country can DNA barcode itself. Barcode Bull. Published online October 2, 2019. http://dx. doi. org/10.21083/ibol.v9i1.5526
  • 87. Yang, C.-Q. et al. (2020) Sixteen years of DNA barcoding in China: what has been Done? What can be done? Front. Ecol. Evol. 8, 57
  • 88. Srivathsan, A. et al. (2021) ONTbarcoder and MinION barcodes aid biodiversity discovery and identification by everyone, for everyone. BMC Biol. 19, 217
  • 89. Bohmann, K. et al. (2021) DNAqua-Net conference unites participants from around the world with the quest to standardize and implement DNA-based aquatic biomonitoring. Environ. DNA 3, 884-888
  • 90. Leese,F. et al. (2018) Why we need sustainable networks bridging countries, disciplines, cultures and generations for aquatic biomonitoring 2.0: a perspective derived from the DNAqua-Net COST action. In Next Gen. Biomonitor. Part 1 (58) (Bohan, D.A. et al., eds), pp. 63-99, Academic Press
  • 91. Bruce,K. et al. (2021) A Practical Guide to DNA-based Methods for Biodiversity Assessment, Pensoft
  • 92. Thalinger, B. et al. (2021) A validation scale to determine the readiness of environmental DNA assays for routine species monitoring. Environ. DNA 3, 823-836
  • 93. Arribas, P. et al. (2022) Toward global integration of biodiversity big data: a harmonized metabarcode data generation module for terrestrial arthropods. Gigascience 11, giac065
  • 94. Meier, R. et al. (2022) Are-analysis of the data in Sharkey et al.'s (2021) minimalist revision reveals that BINs do not deserve names, but BOLD Systems needs a stronger commitment to open science. Cladistics 38, 264-275
  • 95. Trujillo-Gonzalez, A. et al. (2021) Considerations for future environmental DNA accreditation and proficiency testing schemes. Environ. DNA 3, 1049-1058
  • 96. Creedy, T.J. et al. (2022) Coming of age for COI metabarcoding of whole organism community DNA: towards bioinformatic harmonisation. Mol. Ecol. Resour. 22, 847-861
  • 97. Pawlowski, J. et al. (2018) The future of biotic indices in the ecogenomic era: integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems. Sci. Total Environ. 637, 1295-1310
  • 98. Cuber, P. et al. (2022) Comparing the accuracy and efficiency of third generation DNA barcode sequencing: Oxford Nanopore Technologies versus Pacific Biosciences. BioRxiv Published online July 13, 2022. https://doi. org/10.1101/2022.07.13.499863
  • 99. Blackman,R.et al.(2019) Advancing the use of molecular methods for routine freshwater macroinvertebrate biomonitoring - the need for calibration experiments. Metabarcoding Metagenom. 3, e34735
  • 100. Buchner, D. et al. (2021) Wet grinding of invertebrate bulk samples - a scalable and cost-efficient protocol for metabarcoding and metagenomics.Metabarcoding Metagenom.5, e67533
  • 101. Meissner, K. et al. (2021) Metabarcoding for Use in Nordic Routine Aquatic Biomonitoring: A Validation Study, Nordic Council of Ministers
  • 102. Buchner, D. et al. (2021) Standardized high-throughput biomonitoring using DNA metabarcoding: strategies for the adoption of automated liquid handlers.Environ.Sci. Ecotechnol. 8, 100122
  • 103. van Klink, R. et al. (2022) Emerging technologies revolutionise insect ecology and monitoring. Trends Ecol. Evol. 37, 872-885
  • 104. Robinson, C.V. et al. (2021) Combining DNA and people power for healthy rivers: implementing the STREAM community-based approach for global freshwater monitoring. Perspect. Ecol. Conserv. 19, 279-285
  • 105. Kocher, A. et al. (2017) iDNA screening: disease vectors as vertebrate samplers. Mol. Ecol. 26, 6478-6486
  • 106. Gous, A. et al. (2019) Plant-pollinator interactions over time: pollen metabarcoding from bees in a historic collection. Evol. Appl. 12, 187-197
  • 107. Blaxter, M. et al. (2022) Why sequence all eukaryotes? Proc. Natl. Acad. Sci. U. S. A. 119, e2115636118
  • 108. HOye, T.T. et al. (2021) Deep learning and computer vision will transform entomology. Proc. Natl. Acad. Sci. U. S. A. 118, e2002545117
  • 109. Pegoraro, L. et al. (2020) Automated video monitoring of insect pollinators in the field. Emerg. Top. Life Sci. 4, 87-97
  • 110. Wuhrl, L. et al. (2022) DiversityScanner: robotic handling of small invertebrates with machine learning methods. Mol.Ecol. Resour. 22, 1626-1638
  • 111. Rydhmer, K. et al. (2022) Automating insect monitoring using unsupervised near-infrared sensors. Sci. Rep. 12, 2603
  • 112. Brydegaard,M. and Svanberg,S. (2018) Photonic monitoring of atmospheric and aquatic fauna. Laser Photonics Rev. 12, 1800135
  • 113. Brydegaard, M. et al. (2020) Lidar reveals activity anomaly of malaria vectors during pan-African eclipse. Sci. Adv.6, eaay5487
  • 114. Epp, L.S. et al. (2012) New environmental metabarcodes for analysing soil DNA: potential for studying past and present ecosystems. Mol. Ecol. 21, 1821-1833
  • 115. Clarke, L.J. et al. (2014) Environmental metabarcodes for insects: in silico PCR reveals potential for taxonomic bias. Mol. Ecol. Resour. 14, 1160-1170
  • 116. Hajibabaei, M. et al. (2011) Environmental barcoding: a nextgeneration sequencing approach for biomonitoring applications using river benthos. PLoS One 6, e17497
  • 117. Zhou, X. et al. (2013) Ultra-deep sequencing enables highfidelity recovery of biodiversity for bulk arthropod samples without PCR amplification. Gigascience 2, 4
  • 118. Mauvisseau,Q. et al. (2022) The multiple states of environmental DNA and what is known about their persistence in aquatic environments. Environ. Sci. Technol. 56, 5322-5333
  • 119. RytkOnen, S. et al. (2019) From feces to data: a metabarcoding method for analyzing consumed and available prey in a birdinsect food web. Ecol. Evol. 9, 631-639
  • 120. Lees, D.C. et al. (2011) Tracking origins of invasive herbivores through herbaria and archival DNA: the case of the horsechestnut leaf miner. Front. Ecol. Environ. 9, 322-328
  • 121 Chua, P.Y.S. et al. (2021) Towards the extended barcode concept: generating DNA reference data through genome skimming of Danish plants. BioRxiv Published online August 12, 2021. https://doi. org/10.1101/2021.08.11.456029