Published July 31, 2020 | Version v1
Journal article Restricted

Phylogeny, structural diversity and genome-wide expression analysis of fibrillin family genes in rice

  • 1. ∗ & MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, 430070, China & ∗ & College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China

Description

Li, Jiajia, Li, Xukai, Khatab, Ahmed Adel, Xie, Guosheng (2020): Phylogeny, structural diversity and genome-wide expression analysis of fibrillin family genes in rice. Phytochemistry (112377) 175: 1-12, DOI: 10.1016/j.phytochem.2020.112377, URL: http://dx.doi.org/10.1016/j.phytochem.2020.112377

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFD0FFAFFFF0B853FFB5FF89FFD6C01B

References

  • Apweiler, R., Attwood, T.K., Bairoch, A., Bateman, A., Birney, E., Biswas, M., Bucher, P., Cerutti, L., Corpet, F., Croning, M.D., Durbin, R., Falquet, L., Fleischmann, W., Gouzy, J., Hermjakob, H., Hulo, N., Jonassen, I., Kahn, D., Kanapin, A., Karavidopoulou, Y., Lopez, R., Marx, B., Mulder, N.J., Oinn, T.M., Pagni, M., Servant, F., Sigrist, C.J., Zdobnov, E.M., 2001. The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res. 29, 37-40. https://doi.org/10.1093/nar/29.1.37.
  • Bailey, T.L., Boden, M., Buske, F.A., Frith, M., Grant, C.E., Clementi, L., Ren, J., Li, W.W., Noble, W.S., 2009. Meme suite: tools for motif discovery and searching. Nucleic Acids Res. 37, W202-W208. https://doi.org/10.1093/nar/gkp335.
  • Berry, H.M., Rickett, D.V., Baxter, C., Enfissi, E.M.A., Fraser, P.D., 2019. Carotenoid biosynthesis and sequestration in red chilli pepper fruit and its impact on colour intensity traits. J. Exp. Bot. 70 (10), 2637-2650. https://doi.org/10.1093/jxb/ erz086.
  • Bhattacharya, D., Price, D.C., Chan, C.X., Gross, J., Steiner, J.M., Loffelhardt, W., 2014. Analysis of the Genome of Cyanophora Paradoxa: an Algal Model for Understanding Primary Endosymbiosis. pp. 135-148. https://doi.org/10.1007/978-3-7091-1303- 5_7.
  • Brehelin, C., Kessler, F., van Wijk, K.J., 2007. Plastoglobules: versatile lipoprotein particles in plastids. Trends Plant Sci. 12, 260-266. https://doi.org/10.1016/j.tplants. 2007.04.003.
  • Cao, J., 2012. The pectin lyases in Arabidopsis thaliana: evolution, selection and expression profiles. PloS One 7, e46944. https://doi.org/10.1371/journal.pone. 0046944.
  • Cavalier-Smith, T., 2003. Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 109-133. https://doi.org/10.1098/rstb. 2002.1194. discussion 133-104.
  • Chen, H.C., Klein, A., Xiang, M.H., Backhaus, R.A., Kuntz, M., 1998. Drought- and woundinduced expression in leaves of a gene encoding a chromoplast carotenoid-associated protein. Plant J. 14, 317-326. https://doi.org/10.1046/j.1365-313X.1998.00127.x.
  • Cunningham Jr., F.X., Tice, A.B., Pham, C., Gantt, E., 2010. Inactivation of genes encoding plastoglobuli-like proteins in Synechocystis sp. PCC 6803 leads to a light-sensitive phenotype. J. Bacteriol. 192, 1700-1709. https://doi.org/10.1128/JB. 01434-09.
  • Cwiklinski, K., Dalton, J.P., Dufresne, P.J., La Course, J., Williams, D.J.L., Hodgkinson, J., Paterson, S., 2015. The Fasciola hepatica genome: gene duplication and polymorphism reveals adaptation to the host environment and the capacity for rapid evolution. Genome Biol. 16, 71. https://doi.org/10.1186/s13059-015-0632-2.
  • Dabney-Smith, C., van Den Wijngaard, P.W., Treece, Y., Vredenberg, W.J., Bruce, B.D., 1999. The C terminus of a chloroplast precursor modulates its interaction with the translocation apparatus and PIRAC. J. Biol. Chem. 274, 32351-32359. https://doi. org/10.1074/jbc.274.45.32351.
  • De Bodt, S., Maere, S., Van de Peer, Y., 2005. Genome duplication and the origin of angiosperms. Trends Ecol. Evol. 20, 591-597. https://doi.org/10.1016/j.tree.2005. 07.008.
  • Deruere, J., Romer, S., d'Harlingue, A., Backhaus, R.A., Kuntz, M., Camara, B., 1994. Fibril assembly and carotenoid overaccumulation in chromoplasts: a model for supramolecular lipoprotein structures. Plant Cell 6, 119-133. https://doi.org/10.1105/ tpc.6.1.119.
  • Dossa, K., Diouf, D., Cisse, N., 2016. Genome-wide investigation of hsf genes in sesame reveals their segmental duplication expansion and their active role in drought stress response. Front. Plant Sci. 7, 1522. https://doi.org/10.3389/fpls.2016.01522.
  • Gillet, B., Beyly, A., Peltier, G., Rey, P., 1998. Molecular characterization of CDSP 34, a chloroplastic protein induced by water deficit in Solanum tuberosum L. plants, and regulation of CDSP 34 expression by ABA and high illumination. Plant J. 16, 257-262. https://doi.org/10.1046/j.1365-313x.1998.00292.x.
  • Giska, F., Martin, G.B., 2019. PP2C phosphatase Pic1 negatively regulates the phosphorylation status of Pti1b kinase, a regulator of flagellin-triggered immunity in tomato. Biochem. J. 476, 1621-1635. https://doi.org/10.1042/BCJ20190299.
  • Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O., 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307-321. https://doi.org/10.1093/ sysbio/syq010.
  • He, Y., Mao, S., Gao, Y., Zhu, L., Wu, D., Cui, Y., Li, J., Qian, W., 2016. Genome-wide identification and expression analysis of WRKY transcription factors under multiple stresses in Brassica napus. PloS One 11, e0157558. https://doi.org/10.1371/journal. pone.0157558.
  • Hu, B., Jin, J., Guo, A.Y., Zhang, H., Luo, J., Gao, G., 2015. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31, 1296-1297. https://doi.org/10. 1093/bioinformatics/btu817.
  • Huang, J.T., Wang, Q., Park, W., Feng, Y., Kumar, D., Meeley, R., Dooner, H.K., 2017. Competitive ability of maize pollen grains requires paralogous serine threonine protein kinases STK1 and STK2. Genetics 207, 1361-1370. https://doi.org/10.1534/ genetics.117.300358.
  • Inaba, T., Ito-Inaba, Y., 2010. Versatile roles of plastids in plant growth and development. Plant Cell Physiol. 51, 1847-1853. https://doi.org/10.1093/pcp/pcq147.
  • Irish, V.F., 2003. The evolution of floral homeotic gene function. Bioessays 25, 637-646. https://doi.org/10.1002/bies.10292.
  • Jarvis, P., 2008. Targeting of nucleus-encoded proteins to chloroplasts in plants. New Phytol. 179, 257-285. https://doi.org/10.1111/j.1469-8137.2008.02452.x.
  • Jiang, H., Ganesan, N., 2016. CUDAMPF: a multi-tiered parallel framework for accelerating protein sequence search in HMMER on CUDA-enabled GPU. BMC Bioinf. 17, 106. https://doi.org/10.1186/s12859-016-0946-4.
  • Kim, E.H., Lee, D.W., Lee, K.R., Jung, S.J., Jeon, J.S., Kim, H.U., 2017. Conserved function of Fibrillin5 in the plastoquinone-9 biosynthetic pathway in Arabidopsis and rice. Front. Plant Sci. 8, 1197. https://doi.org/10.3389/fpls.2017.01197.
  • Kim, E.H., Lee, Y., Kim, H.U., 2015. Fibrillin 5 is essential for plastoquinone-9 biosynthesis by binding to solanesyl diphosphate synthases in Arabidopsis. Plant Cell 27, 2956-2971. https://doi.org/10.1105/tpc.15.00707.
  • Kim, I., Lee, S.C., Kim, E.H., Song, K., Yang, T.J., Kim, H.U., 2018. Genome-wide identification and expression analyses of the fibrillin family genes suggest their involvement in photoprotection in cucumber. Plants 7, 50. https://doi.org/10.3390/ plants7030050.
  • Kleffmann, T., Russenberger, D., von Zychlinski, A., Christopher, W., Sjolander, K., Gruissem, W., Baginsky, S., 2004. The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr. Biol. : CB 14, 354-362. https://doi.org/10.1016/j.cub.2004.02.039.
  • Lee, K., Lehmann, M., Paul, M.V., Wang, L., Luckner, M., Wanner, G., Geigenberger, P., Leister, D., Kleine, T., 2019. Lack of FIBRILLIN6 in Arabidopsis thaliana Affects Light Acclimation and Sulfate Metabolism, vol. 225. New Phytol, pp. 1715-1731. https:// doi.org/10.1111/nph.16246.
  • Langenkamper, G., Manac'h, N., Broin, M., Cuine, S., Becuwe, N., Kuntz, M., Rey, P., 2001. Accumulation of plastid lipid-associated proteins (fibrillin/CDSP34) upon oxidative stress, ageing and biotic stress in Solanaceae and in response to drought in other species. J. Exp. Bot. 52, 1545-1554. https://doi.org/10.1093/jexbot/52.360. 1545.
  • Lee, D.W., Jung, C., Hwang, I., 2013. Cytosolic events involved in chloroplast protein targeting. Bba-Mol Cell Res 1833, 245-252. https://doi.org/10.1016/j.bbamcr.2012. 03.006.
  • Li, J., Yang, J., Zhu, B., Xie, G., 2019. Overexpressing OsFBN1 enhances plastoglobule formation, reduces grain-filling percent and jasmonate levels under heat stress in rice. Plant Sci. 285, 230-238. https://doi.org/10.1016/j.plantsci.2019.05.007.
  • Li, Q.Q., Zhou, S.D., He, X.J., Yu, Y., Zhang, Y.C., Wei, X.Q., 2010. Phylogeny and biogeography of Allium (Amaryllidaceae: allieae) based on nuclear ribosomal internal transcribed spacer and chloroplast rps16 sequences, focusing on the inclusion of species endemic to China. Ann Bot-London 106, 709-733. https://doi.org/10.1093/ aob/mcq177.
  • Li, S., Nosenko, T., Hackett, J.D., Bhattacharya, D., 2006. Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates. Mol. Biol. Evol. 23, 663-674. https://doi.org/10.1093/molbev/msj075.
  • Lohscheider, J.N., Bartulos, C.R., 2016. Plastoglobules in algae: a comprehensive comparative study of the presence of major structural and functional components in complex plastids. Mar Genom 28, 127-136. https://doi.org/10.1016/j.margen.2016. 06.005.
  • Lundquist, P.K., Poliakov, A., Bhuiyan, N.H., Zybailov, B., Sun, Q., van Wijk, K.J., 2012. The functional network of the Arabidopsis plastoglobule proteome based on quantitative proteomics and genome-wide coexpression analysis. Plant Physiol 158, 1172-1192. https://doi.org/10.1104/pp.111.193144.
  • Magadum, S., Banerjee, U., Murugan, P., Gangapur, D., Ravikesavan, R., 2013. Gene duplication as a major force in evolution. J. Genet. 92, 155-161. https://doi.org/10. 1007/s12041-013-0212-8.
  • Manuse, S., Fleurie, A., Zucchini, L., Lesterlin, C., Grangeasse, C., 2016. Role of eukaryotic-like serine/threonine kinases in bacterial cell division and morphogenesis. FEMS Microbiol. Rev. 40, 41-56. https://doi.org/10.1093/femsre/fuv041.
  • Margulis, L., 1975. Symbiotic theory of the origin of eukaryotic organelles; criteria for proof. Symp. Soc. Exp. Biol. 29, 21-38.
  • Otsubo, M., Ikoma, C., Ueda, M., Ishii, Y., Tamura, N., 2018. Functional role of Fibrillin5 in acclimation to photooxidative stress. Plant Cell Physiol. 59, 1670-1682. https:// doi.org/10.1093/pcp/pcy093.
  • Padmanabhan, M.S., Dinesh-Kumar, S.P., 2010. All hands on deck-the role of chloroplasts, endoplasmic reticulum, and the nucleus in driving plant innate immunity. Molecular plant-microbe interactions : MPMI (Mol. Plant-Microbe Interact.) 23, 1368-1380. https://doi.org/10.1094/MPMI-05-10-0113.
  • Paterson, A.H., Chapman, B.A., Kissinger, J.C., Bowers, J.E., Feltus, F.A., Estill, J.C., 2006. Many gene and domain families have convergent fates following independent whole-genome duplication events in Arabidopsis, Oryza, Saccharomyces and Tetraodon. Trends Genet. 22, 597-602. https://doi.org/10.1016/j.tig.2006.09.003.
  • Pozueta-Romero, J., Rafia, F., Houlne, G., Cheniclet, C., Carde, J.P., Schantz, M.L., Schantz, R., 1997. A ubiquitous plant housekeeping gene, PAP, encodes a major protein component of bell pepper chromoplasts. Plant Physiol 115, 1185-1194. https://doi.org/10.1104/pp.115.3.1185.
  • Prince, V.E., Pickett, F.B., 2002. Splitting pairs: the diverging fates of duplicated genes. Nat. Rev. Genet. 3, 827-837. https://doi.org/10.1038/nrg928.
  • Proost, S., Pattyn, P., Gerats, T., Van de Peer, Y., 2011. Journey through the past: 150 million years of plant genome evolution. Plant J. 66, 58-65. https://doi.org/10. 1111/j.1365-313X.2011.04521.x.
  • Qing, G., Ma, L.C., Khorchid, A., Swapna, G.V., Mal, T.K., Takayama, M.M., Xia, B., Phadtare, S., Ke, H., Acton, T., Montelione, G.T., Ikura, M., Inouye, M., 2004. Coldshock induced high-yield protein production in Escherichia coli. Nat. Biotechnol. 22, 877-882. https://doi.org/10.1038/nbt984.
  • Raza, A., Razzaq, A., Mehmood, S.S., Zou, X., Zhang, X., Lv, Y., Xu, J., 2019. Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8, 34. https://doi.org/10.3390/plants8020034.
  • Reimegard, J., Kundu, S., Pendle, A., Irish, V.F., Shaw, P., Nakayama, N., Sundstrom, J.F., Emanuelsson, O., 2017. Genome-wide identification of physically clustered genes suggests chromatin-level co-regulation in male reproductive development in Arabidopsis thaliana. Nucleic Acids Res. 45, 3253-3265. https://doi.org/10.1093/ nar/gkx087.
  • Rey, P., Gillet, B., Romer, S., Eymery, F., Massimino, J., Peltier, G., Kuntz, M., 2000. Overexpression of a pepper plastid lipid-associated protein in tobacco leads to changes in plastid ultrastructure and plant development upon stress. Plant J. 21, 483-494. https://doi.org/10.1046/j.1365-313x.2000.00699.x.
  • Roy, S.W., Gilbert, W., 2006. The evolution of spliceosomal introns: patterns, puzzles and progress. Nat. Rev. Genet. 7, 211-221. https://doi.org/10.1038/nrg1807.
  • Saha, D., Mukherjee, P., Dutta, S., Meena, K., Sarkar, S.K., Mandal, A.B., Dasgupta, T., Mitra, J., 2019. Genomic insights into HSFs as candidate genes for high-temperature stress adaptation and gene editing with minimal off- target effects in flax. Sci. Rep. 9, 5581. https://doi.org/10.1038/s41598-019-41936-1.
  • Sato, N., 2017. Revisiting the theoretical basis of the endosymbiotic origin of plastids in the original context of Lynn Margulis on the origin of mitosing, eukaryotic cells. J. Theor. Biol. 434, 104-113. https://doi.org/10.1016/j.jtbi.2017.08.028.
  • Shan, T., Xu, Z., Liu, J., Wu, W., Wang, Y., 2017. Lkb1 regulation of skeletal muscle development, metabolism and muscle progenitor cell homeostasis. J. Cell. Physiol. 232, 2653-2656. https://doi.org/10.1002/jcp.25786.
  • Sharif, A.L., Smith, A.G., Abell, C., 1989. Isolation and characterisation of a cDNA clone for a chlorophyll synthesis enzyme from Euglena gracilis. The chloroplast enzyme hydroxymethylbilane synthase (porphobilinogen deaminase) is synthesised with a very long transit peptide in Euglena. Eur. J. Biochem. 184, 353-359. https://doi.org/ 10.1111/j.1432-1033.1989.tb15026.x.
  • Simkin, A.J., Gaffe, J., Alcaraz, J.P., Carde, J.P., Bramley, P.M., Fraser, P.D., Kuntz, M., 2007. Fibrillin influence on plastid ultrastructure and pigment content in tomato fruit. Phytochemistry 68, 1545-1556. https://doi.org/10.1016/j.phytochem.2007. 03.014.
  • Singh, D.K., Laremore, T.N., Smith, P.B., Maximova, S.N., McNellis, T.W., 2012. Knockdown of FIBRILLIN4 gene expression in apple decreases plastoglobule plastoquinone content. PloS One 7, e47547. https://doi.org/10.1371/journal.pone. 0047547.
  • Singh, D.K., McNellis, T.W., 2011. Fibrillin protein function: the tip of the iceberg? Trends Plant Sci. 16, 432-441. https://doi.org/10.1016/j.tplants.2011.03.014.
  • Smith, C.A., Shi, C.A., Chroust, M.K., Bliska, T.E., Kelly, M.J.S., Jacobson, M.P., Kortemme, T., 2013. Design of a phosphorylatable PDZ domain with peptide-specific affinity changes. Structure 21, 54-64. https://doi.org/10.1016/j.str.2012.10.007.
  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731-2739. https:// doi.org/10.1093/molbev/msr121.
  • Thompson, J.D., Gibson, T.J., Higgins, D.G., 2002. Multiple sequence alignment using ClustalW and ClustalX. Current Protocols in Bioinformatics. https://doi.org/10. 1002/0471250953.bi0203s00. (Chapter 2), Unit 2 3.
  • Vidi, P.A., Kanwischer, M., Baginsky, S., Austin, J.R., Csucs, G., Dormann, P., Kessler, F., Brehelin, C., 2006. Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles. J. Biol. Chem. 281, 11225-11234. https://doi.org/10.1074/jbc.M511939200.
  • Vidi, P.A., Kessler, F., Brehelin, C., 2007. Plastoglobules: a new address for targeting recombinant proteins in the chloroplast. BMC Biotechnol. 7, 4. https://doi.org/10. 1186/1472-6750-7-4.
  • Vishnevetsky, M., Ovadis, M., Itzhaki, H., Levy, M., LibalWeksler, Y., Adam, Z., Vainstein, A., 1996. Molecular cloning of a carotenoid-associated protein from Cucumis sativus corollas: homologous genes involved in carotenoid sequestration in chromoplasts. Plant J. 10, 1111-1118. https://doi.org/10.1046/j.1365-313X.1996.10061111.x.
  • Wilkins, M.R., Gasteiger, E., Bairoch, A., Sanchez, J.C., Williams, K.L., Appel, R.D., Hochstrasser, D.F., 1999. Protein identification and analysis tools in the ExPASy server. Methods Mol. Biol. 112, 531-552. https://doi.org/10.1385/1-59259-584- 7:531.
  • Yang, Y., Sulpice, R., Himmelbach, A., Meinhard, M., Christmann, A., Grill, E., 2006. Fibrillin expression is regulated by abscisic acid response regulators and is involved in abscisic acid-mediated photoprotection. Proc. Natl. Acad. Sci. U. S. A. 103, 6061-6066. https://doi.org/10.1073/pnas.0501720103.
  • Youssef, A., Laizet, Y., Block, M.A., Marechal, E., Alcaraz, J.P., Larson, T.R., Pontier, D., Gaffe, J., Kuntz, M., 2010. Plant lipid-associated fibrillin proteins condition jasmonate production under photosynthetic stress. Plant J. 61, 436-445. https://doi.org/ 10.1111/j.1365-313X.2009.04067.x.
  • Ytterberg, A.J., Peltier, J.B., van Wijk, K.J., 2006. Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes. Plant Physiol 140, 984-997. https://doi.org/10.1104/pp.105. 076083.
  • Zhang, J., Gao, G., Zhang, M., Zhang, D., Wang, C., Zhao, D., Liu, F., 2006. ZnO/PS coreshell hybrid microspheres prepared with miniemulsion polymerization. J. Colloid Interface Sci. 301, 78-84. https://doi.org/10.1016/j.jcis.2006.05.005.
  • Zhu, Y., Wang, Y., Li, R., Song, X., Wang, Q., Huang, S., Jin, J.B., Liu, C.M., Lin, J., 2010. Analysis of interactions among the CLAVATA3 receptors reveals a direct interaction between CLAVATA2 and CORYNE in Arabidopsis. Plant J. 61, 223-233. https://doi. org/10.1111/j.1365-313X.2009.04049.x.