Published November 30, 2020 | Version v1
Journal article Restricted

Synthesis of bilocularin A carbamate derivatives and their evaluation as leucine transport inhibitors in prostate cancer cells

  • 1. * & Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia

Description

Huxley, Cohan, Wibowo, Mario, Lum, Kah Yean, Gordon, Shelly, D'Hyon, Sebastian, Guan, Hanyu, Wang, Xueyi, Chen, Yuxi, Si, Mingran, Wang, Mengchao, White, Jonathan M., Wahi, Kanu, Wang, Qian, Holst, Jeff, Davis, Rohan A. (2020): Synthesis of bilocularin A carbamate derivatives and their evaluation as leucine transport inhibitors in prostate cancer cells. Phytochemistry (112478) 179: 1-7, DOI: 10.1016/j.phytochem.2020.112478, URL: http://dx.doi.org/10.1016/j.phytochem.2020.112478

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFBF733D8B79FFC2E53AFFD0D92A032F

References

  • Askin, S., Bond, T.E.H., Sorenson, A.E., Moreau, M.J.J., Antony, H., Davis, R.A., Schaeffer, P.M., 2018. Selective protein unfolding: a universal mechanism of action for the development of irreversible inhibitors. Chem. Commun. 54, 1738-1741. https://doi.org/10.1039/C8CC00090E.
  • Barnes, E.C., Choomuenwai, V., Andrews, K.T., Quinn, R.J., Davis, R.A., 2012. Design and synthesis of screening libraries based on the muurolane natural product scaffold. Org. Biomol. Chem. 10, 4015-4023. https://doi.org/10.1039/c2ob00029f.
  • Barnes, E.C., Kumar, R., Davis, R.A., 2016. The use of isolated natural products as scaffolds for the generation of chemically diverse screening libraries for drug discovery. Nat. Prod. Rep. 33, 372-381. https://doi.org/10.1039/C5NP00121H.
  • Callies, O., S´anchez-Canete t, M.P., Gamarro, F., Jim´enez, I.A., Castanys, S., Bazzocchi, I. L., 2015. Restoration of chemosensitivity in P-glycoprotein-dependent multidrugresistant cells by dihydro- β -agarofuran sesquiterpenes from Celastrus vulcanicola. J. Nat. Prod. 78, 736-745. https://doi.org/10.1021/np500903a.
  • Choomuenwai, V., Andrews, K.T., Davis, R.A., 2012. Synthesis and antimalarial evaluation of a screening library based on a tetrahydroanthraquinone natural product scaffold. Bioorg. Med. Chem. 20, 7167-7174. https://doi.org/10.1016/j. bmc.2012.09.052.
  • Davis, R.A., Pierens, G.K., Parsons, P.G., 2007. Synthesis and spectroscopic characterisation of a combinatorial library based on the fungal natural product 3- chloro-4-hydroxyphenylacetamide. Magn. Reson. Chem. 45, 442-445. https://doi. org/10.1002/mrc.1984.
  • Delebecq, E., Pascault, J.-P., Boutevin, B., Ganachaud, F., 2013. On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem. Rev. 113, 80-118. https://doi.org/10.1021/cr300195n.
  • Dilrukshi Herath, H.M.P., Preston, S., Hofmann, A., Davis, R.A., Koehler, A.V., Chang, B. C.H., Jabbar, A., Gasser, R.B., 2017. Screening of a small, well-curated natural product-based library identifies two rotenoids with potent nematocidal activity against Haemonchus contortus. Vet. Parasitol. 244, 172-175. https://doi.org/ 10.1016/j.vetpar.2017.07.005.
  • Egbewande, F.A., Coster, M.J., Jenkins, I.D., Davis, R.A., 2019. Reaction of papaverine with Baran diversinatesTM. Molecules 24, 3938. https://doi.org/10.3390/ molecules24213938.
  • Egbewande, F.A., Nilsson, N., White, J.M., Coster, M.J., Davis, R.A., 2017. The design, synthesis, and anti-inflammatory evaluation of a drug-like library based on the natural product valerenic acid. Bioorg. Med. Chem. Lett 27, 3185-3189. https://doi. org/10.1016/j.bmcl.2017.05.021.
  • Egbewande, F.A., Sadowski, M.C., Levrier, C., Tousignant, K.D., White, J.M., Coster, M. J., Nelson, C.C., Davis, R.A., 2018. Identification of gibberellic acid derivatives that deregulate cholesterol metabolism in prostate cancer cells. J. Nat. Prod. 81, 838-845. https://doi.org/10.1021/acs.jnatprod.7b00929.
  • Farrugia, L.J., 1999. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 32, 837-838. https://doi.org/10.1107/S0021889899006020.
  • Feher, M., Schmidt, J.M., 2003. Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J. Chem. Inf. Comput. Sci. 43, 218-227. https://doi.org/10.1021/ci0200467.
  • Flack, H.D., 1983. On enantiomorph-polarity estimation. Acta Crystallogr. A 39, 876-881. https://doi.org/10.1107/S0108767383001762.
  • Fu, Y., Wang, W., Gong, Q., Zhang, H., Zhao, W., 2019. Neuroprotective dihydroβ -agarofuran-type sesquiterpenes from the seeds of Euonymus maackii. J. Nat. Prod. 82, 3096-3103. https://doi.org/10.1021/acs.jnatprod.9b00701.
  • Gao, J.-M., Wu, W.-J., Zhang, J.-W., Konishi, Y., 2007. The dihydro- β -agarofuran sesquiterpenoids. Nat. Prod. Rep. 24, 1153-1189. https://doi.org/10.1039/ B601473A.
  • Gierasch, T.M., Shi, Z., Verdine, G.L., 2003. Extensively stereodiversified scaffolds for use in diversity-oriented library synthesis. Org. Lett. 5, 621-624. https://doi.org/ 10.1021/ol027116f.
  • Gordon, S., Wibowo, M., Wang, Q., Holst, J., Davis, R.A., 2019. Dihydro- β -agarofurans from the Australian rainforest plant Denhamia celastroides that inhibit leucine transport in prostate cancer cells. Magn. Reson. Chem. 57, 101-109. https://doi.org/ 10.1002/mrc.4801.
  • Grabowski, K., Baringhaus, K.-H., Schneider, G., 2008. Scaffold diversity of natural products: inspiration for combinatorial library design. Nat. Prod. Rep. 25, 892-904. https://doi.org/10.1039/B715668P.
  • Kumar, R., Sadowski, M.C., Levrier, C., Nelson, C.C., Jones, A.J., Holleran, J.P., Avery, V. M., Healy, P.C., Davis, R.A., 2015. Design and synthesis of a screening library using the natural product scaffold 3-chloro-4-hydroxyphenylacetic acid. J. Nat. Prod. 78, 914-918. https://doi.org/10.1021/np500856u.
  • Leenders, R.G.G., Ruytenbeek, R., Damen, E.W.P., Scheeren, H.W., 1996. Highly Diastereoselective Synthesis of Anomeric β- O -glycopyranosyl Carbamates from Isocyanates. Synthesis (Stuttg), pp. 1309-1312. https://doi.org/10.1055/s-1996- 4377, 1996.
  • Levrier, C., Sadowski, M.C., Nelson, C.C., Healy, P.C., Davis, R.A., 2015. Denhaminols A-H, dihydro- β -agarofurans from the endemic Australian rainforest plant Denhamia celastroides. J. Nat. Prod. 78, 111-119. https://doi.org/10.1021/np500740f.
  • Macrae, C.F., Bruno, I.J., Chisholm, J.A., Edgington, P.R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., Wood, P.A., 2008. Mercury CSD 2.0 - new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 41, 466-470. https://doi.org/10.1107/S0021889807067908.
  • Perestelo, N.R., Jim´enez, I.A., Tokuda, H., V´azquez, J.T., Ichiishi, E., Bazzocchi, I.L., 2016. Absolute configuration of dihydro- β -agarofuran sesquiterpenes from Maytenus jelskii and their potential antitumor-promoting effects. J. Nat. Prod. 79, 2324-2331. https://doi.org/10.1021/acs.jnatprod.6b00469.
  • Sasikumar, P., Sharathna, P., Prabha, B., Varughese, S., Kumar, A.N., Sivan, V.V., Sherin, D.R., Suresh, E., Manojkumar, T.K., Radhakrishnan, K.V., 2018. Dihydroβ -agarofuran sesquiterpenoids from the seeds of Celastrus paniculatus Willd. and their α -glucosidase inhibitory activity. Phytochem. Lett. 26, 1-8. https://doi.org/ 10.1016/j.phytol.2018.04.011.
  • Schwetlick, K., Noack, R., 1995. Kinetics and catalysis of consecutive isocyanate reactions. Formation of carbamates, allophanates and isocyanurates. J. Chem. Soc. Perkin Trans. 2, 395-402. https://doi.org/10.1039/P29950000395.
  • Sheldrick, G.M., 2015. Crystal structure refinement with SHELXL. Acta Crystallogr. C 71, 3-8. https://doi.org/10.1107/S2053229614024218.
  • Sheldrick, G.M., 2008. A short history of SHELX. Acta Crystallogr. A 64, 112-122. https://doi.org/10.1107/S0108767307043930.
  • Spivey, A.C., Weston, M., Woodhead, S., 2002. Celastraceae sesquiterpenoids: biological activity and synthesis. Chem. Soc. Rev. 31, 43-59. https://doi.org/10.1039/ b000678p.
  • Wang, Q., Bailey, C.G., Ng, C., Tiffen, J., Thoeng, A., Minhas, V., Lehman, M.L., Hendy, S. C., Buchanan, G., Nelson, C.C., Rasko, J.E.J., Holst, J., 2011. Androgenreceptor and nutrient signaling pathways coordinate the demand for increased amino acid transport during prostate cancer progression. Canc. Res. 71, 7525-7536. https://doi. org/10.1158/0008-5472.CAN-11-1821.
  • Wibowo, M., Forster, P.I., Guymer, G.P., Hofmann, A., Davis, R.A., 2019. Using UHPLC- MS profiling for the discovery of new dihydro- β -agarofurans from Australian Celastraceae plant extracts. Molecules 24, 859. https://doi.org/10.3390/ molecules24050859.
  • Wibowo, M., Levrier, C., Sadowski, M.C., Nelson, C.C., Wang, Q., Holst, J., Healy, P.C., Hofmann, A., Davis, R.A., 2016a. Bioactive dihydro- β -agarofuran sesquiterpenoids from the Australian rainforest plant Maytenus bilocularis. J. Nat. Prod. 79, 1445-1453. https://doi.org/10.1021/acs.jnatprod.6b00190.
  • Wibowo, M., Wang, Q., Holst, J., White, J.M., Hofmann, A., Davis, R.A., 2018. Dihydroβ -agarofurans from the roots of the Australian endemic rainforest tree Maytenus bilocularis act as leucine transport inhibitors. Phytochemistry 148, 71-77. https:// doi.org/10.1016/j.phytochem.2018.01.009.
  • Wibowo, M., Wang, Q., Holst, J., White, J.M., Hofmann, A., Davis, R.A., 2017. Celastrofurans A-G: dihydro- β -agarofurans from the Australian rainforest vine Celastrus subspicata and their inhibitory effect on leucine transport in prostate cancer cells. J. Nat. Prod. 80, 1918-1925. https://doi.org/10.1021/acs.jnatprod.7b00220.
  • Wibowo, M., Wang, Q., Holst, J., White, J.M., Hofmann, A., Davis, R.A., 2016b. Dihydroβ -agarofurans from the Australian endemic rainforest plant Denhamia pittosporoides inhibit leucine transport in prostate cancer cells. Asian J. Org. Chem. 5, 1461-1466. https://doi.org/10.1002/ajoc.201600462.
  • Zhao, X., Xu, S., Yin, M., Wang, X., Wang, Q., Shan, Y., Chen, Y., Liu, F., Guo, S., Feng, X., 2018. Six new dihydro- β -agarofuran sesquiterpenes from the stems and leaves of Monimopetalum chinense and their antimicrobial activities. Phytochem. Lett. 27, 160-166. https://doi.org/10.1016/j.phytol.2018.07.024.
  • Zhou, L., He, Q.-J., Lu, L.-W., Zhao, F., Zhang, Y., Huang, X.-X., Lin, B., Song, S.-J., 2019. Tripterfordins A-O, dihydro- β -agarofuran sesquiterpenoids from the leaves of Tripterygium wilfordii. J. Nat. Prod. 82, 2696-2706. https://doi.org/10.1021/acs. jnatprod.9b00089.
  • Zulfiqar, B., Jones, A.J., Sykes, M.L., Shelper, T.B., Davis, R.A., Avery, V.M., 2017. Screening a natural product-based library against kinetoplastid parasites. Molecules 22, 1715. https://doi.org/10.3390/molecules22101715.